CodeDJ: Reproducible queries over large-scale software repositories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00354096" target="_blank" >RIV/68407700:21240/21:00354096 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ECOOP.2021.6" target="_blank" >https://doi.org/10.4230/LIPIcs.ECOOP.2021.6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.6" target="_blank" >10.4230/LIPIcs.ECOOP.2021.6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CodeDJ: Reproducible queries over large-scale software repositories
Popis výsledku v původním jazyce
Analyzing massive code bases is a staple of modern software engineering research – a welcome side-effect of the advent of large-scale software repositories such as GitHub. Selecting which projects one should analyze is a labor-intensive process, and a process that can lead to biased results if the selection is not representative of the population of interest. One issue faced by researchers is that the interface exposed by software repositories only allows the most basic of queries. CodeDJ is an infrastructure for querying repositories composed of a persistent datastore, constantly updated with data acquired from GitHub, and an in-memory database with a Rust query interface. CodeDJ supports reproducibility, historical queries are answered deterministically using past states of the datastore; thus researchers can reproduce published results. To illustrate the benefits of CodeDJ, we identify biases in the data of a published study and, by repeating the analysis with new data, we demonstrate that the study’s conclusions were sensitive to the choice of projects.
Název v anglickém jazyce
CodeDJ: Reproducible queries over large-scale software repositories
Popis výsledku anglicky
Analyzing massive code bases is a staple of modern software engineering research – a welcome side-effect of the advent of large-scale software repositories such as GitHub. Selecting which projects one should analyze is a labor-intensive process, and a process that can lead to biased results if the selection is not representative of the population of interest. One issue faced by researchers is that the interface exposed by software repositories only allows the most basic of queries. CodeDJ is an infrastructure for querying repositories composed of a persistent datastore, constantly updated with data acquired from GitHub, and an in-memory database with a Rust query interface. CodeDJ supports reproducibility, historical queries are answered deterministically using past states of the datastore; thus researchers can reproduce published results. To illustrate the benefits of CodeDJ, we identify biases in the data of a published study and, by repeating the analysis with new data, we demonstrate that the study’s conclusions were sensitive to the choice of projects.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000421" target="_blank" >EF15_003/0000421: Big Code: Škálovatelná analýza rozsáhlých bází programů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics (LIPIcs)
ISBN
978-3-95977-190-0
ISSN
—
e-ISSN
1868-8969
Počet stran výsledku
24
Strana od-do
1-24
Název nakladatele
Dagstuhl Publishing,
Místo vydání
Saarbrücken
Místo konání akce
online
Datum konání akce
11. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—