Modular framework for similarity-based dataset discovery using external knowledge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00356040" target="_blank" >RIV/68407700:21240/22:00356040 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1108/DTA-09-2021-0261" target="_blank" >https://doi.org/10.1108/DTA-09-2021-0261</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1108/DTA-09-2021-0261" target="_blank" >10.1108/DTA-09-2021-0261</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modular framework for similarity-based dataset discovery using external knowledge
Popis výsledku v původním jazyce
Purpose Semantic retrieval and discovery of datasets published as open data remains a challenging task. The datasets inherently originate in the globally distributed web jungle, lacking the luxury of centralized database administration, database schemes, shared attributes, vocabulary, structure and semantics. The existing dataset catalogs provide basic search functionality relying on keyword search in brief, incomplete or misleading textual metadata attached to the datasets. The search results are thus often insufficient. However, there exist many ways of improving the dataset discovery by employing content-based retrieval, machine learning tools, third-party (external) knowledge bases, countless feature extraction methods and description models and so forth. Design/methodology/approach In this paper, the authors propose a modular framework for rapid experimentation with methods for similarity-based dataset discovery. The framework consists of an extensible catalog of components prepared to form custom pipelines for dataset representation and discovery. Findings The study proposes several proof-of-concept pipelines including experimental evaluation, which showcase the usage of the framework. Originality/value To the best of authors’ knowledge, there is no similar formal framework for experimentation with various similarity methods in the context of dataset discovery. The framework has the ambition to establish a platform for reproducible and comparable research in the area of dataset discovery. The prototype implementation of the framework is available on GitHub.
Název v anglickém jazyce
Modular framework for similarity-based dataset discovery using external knowledge
Popis výsledku anglicky
Purpose Semantic retrieval and discovery of datasets published as open data remains a challenging task. The datasets inherently originate in the globally distributed web jungle, lacking the luxury of centralized database administration, database schemes, shared attributes, vocabulary, structure and semantics. The existing dataset catalogs provide basic search functionality relying on keyword search in brief, incomplete or misleading textual metadata attached to the datasets. The search results are thus often insufficient. However, there exist many ways of improving the dataset discovery by employing content-based retrieval, machine learning tools, third-party (external) knowledge bases, countless feature extraction methods and description models and so forth. Design/methodology/approach In this paper, the authors propose a modular framework for rapid experimentation with methods for similarity-based dataset discovery. The framework consists of an extensible catalog of components prepared to form custom pipelines for dataset representation and discovery. Findings The study proposes several proof-of-concept pipelines including experimental evaluation, which showcase the usage of the framework. Originality/value To the best of authors’ knowledge, there is no similar formal framework for experimentation with various similarity methods in the context of dataset discovery. The framework has the ambition to establish a platform for reproducible and comparable research in the area of dataset discovery. The prototype implementation of the framework is available on GitHub.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data Technologies and Applications
ISSN
2514-9288
e-ISSN
2514-9318
Svazek periodika
56
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
30
Strana od-do
506-535
Kód UT WoS článku
000759634600001
EID výsledku v databázi Scopus
2-s2.0-85125073753