Offline evaluation of the serendipity in recommendation systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00363087" target="_blank" >RIV/68407700:21240/22:00363087 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10000782" target="_blank" >https://ieeexplore.ieee.org/document/10000782</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CSIT56902.2022.10000782" target="_blank" >10.1109/CSIT56902.2022.10000782</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Offline evaluation of the serendipity in recommendation systems
Popis výsledku v původním jazyce
Offline optimization of recommender systems is a difficult task. Popular optimization criteria such as RMSE, Recall, and NDCG do not correlate much with online performance, especially when the recommendation algorithm is largely different from the one used to generate the offline data. An exciting direction of research to mitigate this problem is to use more robust optimization criteria. Serendipity is reported to be a promising proxy. However, more variants exist, and it is unclear whether they can be used as a single criterion to optimize. This paper analyzes how serendipity relates to other optimization criteria for three different recommendation algorithms. Based on our findings, we propose to modify the way serendipity is computed. We conduct experiments using three collaborative filtering algorithms: K-Nearest Neighbors, Matrix Factorization, and Embarrassingly Shallow Autoencoder (EASE). We also employ and evaluate the ensemble learning approach and analyze the importance of the individual components of serendipity.
Název v anglickém jazyce
Offline evaluation of the serendipity in recommendation systems
Popis výsledku anglicky
Offline optimization of recommender systems is a difficult task. Popular optimization criteria such as RMSE, Recall, and NDCG do not correlate much with online performance, especially when the recommendation algorithm is largely different from the one used to generate the offline data. An exciting direction of research to mitigate this problem is to use more robust optimization criteria. Serendipity is reported to be a promising proxy. However, more variants exist, and it is unclear whether they can be used as a single criterion to optimize. This paper analyzes how serendipity relates to other optimization criteria for three different recommendation algorithms. Based on our findings, we propose to modify the way serendipity is computed. We conduct experiments using three collaborative filtering algorithms: K-Nearest Neighbors, Matrix Factorization, and Embarrassingly Shallow Autoencoder (EASE). We also employ and evaluate the ensemble learning approach and analyze the importance of the individual components of serendipity.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE 17th International Conference on Computer Science and Information Technologies
ISBN
979-8-3503-3431-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
597-601
Název nakladatele
IEEE
Místo vydání
Dortmund
Místo konání akce
Lvov
Datum konání akce
10. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000927642900140