Establishing Herd Immunity is Hard Even in Simple Geometric Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00363799" target="_blank" >RIV/68407700:21240/23:00363799 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-32296-9_5" target="_blank" >https://doi.org/10.1007/978-3-031-32296-9_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-32296-9_5" target="_blank" >10.1007/978-3-031-32296-9_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Establishing Herd Immunity is Hard Even in Simple Geometric Networks
Popis výsledku v původním jazyce
We study the following model of disease spread in a social network. In the beginning, all individuals are either ``infected'' or ``healthy''. Next, in discrete rounds, the disease spreads in the network from infected to healthy individuals such that a healthy individual gets infected if and only if a sufficient number of its direct neighbours are already infected. We represent the social network as a graph. Inspired by the real-world restrictions in the current epidemic, especially by social and physical distancing requirements, we restrict ourselves to networks that can be represented as geometric intersection graphs. We show that finding a minimal vertex set of initially infected individuals to spread the disease in the whole network is computationally hard, already on unit disk graphs. Hence, to provide some algorithmic results, we focus ourselves on simpler geometric graph families, such as interval graphs and grid graphs.
Název v anglickém jazyce
Establishing Herd Immunity is Hard Even in Simple Geometric Networks
Popis výsledku anglicky
We study the following model of disease spread in a social network. In the beginning, all individuals are either ``infected'' or ``healthy''. Next, in discrete rounds, the disease spreads in the network from infected to healthy individuals such that a healthy individual gets infected if and only if a sufficient number of its direct neighbours are already infected. We represent the social network as a graph. Inspired by the real-world restrictions in the current epidemic, especially by social and physical distancing requirements, we restrict ourselves to networks that can be represented as geometric intersection graphs. We show that finding a minimal vertex set of initially infected individuals to spread the disease in the whole network is computationally hard, already on unit disk graphs. Hence, to provide some algorithmic results, we focus ourselves on simpler geometric graph families, such as interval graphs and grid graphs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-19557S" target="_blank" >GA22-19557S: Nové výzvy ve výpočetní socální volbě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th Workshop on Algorithms and Models for the Web Graph
ISBN
978-3-031-32295-2
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
68-82
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Toronto
Datum konání akce
23. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—