Degreewidth: A New Parameter for Solving Problems on Tournaments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368909" target="_blank" >RIV/68407700:21240/23:00368909 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-43380-1_18" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43380-1_18" target="_blank" >10.1007/978-3-031-43380-1_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Degreewidth: A New Parameter for Solving Problems on Tournaments
Popis výsledku v původním jazyce
In the paper, we define a new parameter for tournaments called degreewidth which can be seen as a measure of how far is the tournament from being acyclic. The degreewidth of a tournament T denoted by is the minimum value k for which we can find an ordering of the vertices of T such that every vertex is incident to at most k backward arcs (i.e. an arc such that ). Thus, a tournament is acyclic if and only if its degreewidth is zero. Additionally, the class of sparse tournaments defined by Bessy et al. [ESA 2017] is exactly the class of tournaments with degreewidth one. We study computational complexity of finding degreewidth. We show it is NP-hard and complement this result with a 3-approximation algorithm. We provide a -time algorithm to decide if a tournament is sparse, where n is its number of vertices. Finally, we study classical graph problems DOMINATING SET and FEEDBACK VERTEX SET parameterized by degreewidth. We show the former is fixed-parameter tractable whereas the latter is NP-hard even on sparse tournaments. Additionally, we show polynomial time algorithm for FEEDBACK ARC SET on sparse tournaments.
Název v anglickém jazyce
Degreewidth: A New Parameter for Solving Problems on Tournaments
Popis výsledku anglicky
In the paper, we define a new parameter for tournaments called degreewidth which can be seen as a measure of how far is the tournament from being acyclic. The degreewidth of a tournament T denoted by is the minimum value k for which we can find an ordering of the vertices of T such that every vertex is incident to at most k backward arcs (i.e. an arc such that ). Thus, a tournament is acyclic if and only if its degreewidth is zero. Additionally, the class of sparse tournaments defined by Bessy et al. [ESA 2017] is exactly the class of tournaments with degreewidth one. We study computational complexity of finding degreewidth. We show it is NP-hard and complement this result with a 3-approximation algorithm. We provide a -time algorithm to decide if a tournament is sparse, where n is its number of vertices. Finally, we study classical graph problems DOMINATING SET and FEEDBACK VERTEX SET parameterized by degreewidth. We show the former is fixed-parameter tractable whereas the latter is NP-hard even on sparse tournaments. Additionally, we show polynomial time algorithm for FEEDBACK ARC SET on sparse tournaments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science
ISBN
978-3-031-43379-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
246-260
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Fribourg
Datum konání akce
28. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001162209000018