The Complexity of Fair Division of Indivisible Items with Externalities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00369990" target="_blank" >RIV/68407700:21240/24:00369990 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/aaai.v38i9.28822" target="_blank" >https://doi.org/10.1609/aaai.v38i9.28822</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v38i9.28822" target="_blank" >10.1609/aaai.v38i9.28822</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Complexity of Fair Division of Indivisible Items with Externalities
Popis výsledku v původním jazyce
We study the computational complexity of fairly allocating a set of indivisible items under externalities. In this recently-proposed setting, in addition to the utility the agent gets from their bundle, they also receive utility from items allocated to other agents. We focus on the extended definitions of envy-freeness up to one item (EF1) and of envy-freeness up to any item (EFX), and we provide the landscape of their complexity for several different scenarios. We prove that it is NP-complete to decide whether there exists an EFX allocation, even when there are only three agents, or even when there are only six different values for the items. We complement these negative results by showing that when both the number of agents and the number of different values for items are bounded by a parameter the problem becomes fixed-parameter tractable. Furthermore, we prove that two-valued and binary-valued instances are equivalent and that EFX and EF1 allocations coincide for this class of instances. Finally, motivated from real-life scenarios, we focus on a class of structured valuation functions, which we term agent/item-correlated. We prove their equivalence to the "standard" setting without externalities. Therefore, all previous results for EF1 and EFX apply immediately for these valuations.
Název v anglickém jazyce
The Complexity of Fair Division of Indivisible Items with Externalities
Popis výsledku anglicky
We study the computational complexity of fairly allocating a set of indivisible items under externalities. In this recently-proposed setting, in addition to the utility the agent gets from their bundle, they also receive utility from items allocated to other agents. We focus on the extended definitions of envy-freeness up to one item (EF1) and of envy-freeness up to any item (EFX), and we provide the landscape of their complexity for several different scenarios. We prove that it is NP-complete to decide whether there exists an EFX allocation, even when there are only three agents, or even when there are only six different values for the items. We complement these negative results by showing that when both the number of agents and the number of different values for items are bounded by a parameter the problem becomes fixed-parameter tractable. Furthermore, we prove that two-valued and binary-valued instances are equivalent and that EFX and EF1 allocations coincide for this class of instances. Finally, motivated from real-life scenarios, we focus on a class of structured valuation functions, which we term agent/item-correlated. We prove their equivalence to the "standard" setting without externalities. Therefore, all previous results for EF1 and EFX apply immediately for these valuations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 38th AAAI Conference on Artificial Intelligence
ISBN
—
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
9
Strana od-do
9653-9661
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
Vancouver
Datum konání akce
20. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001241512400025