Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evolvable transformation of knowledge graphs into human-oriented formats

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00370899" target="_blank" >RIV/68407700:21240/24:00370899 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10844-023-00809-w" target="_blank" >https://doi.org/10.1007/s10844-023-00809-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10844-023-00809-w" target="_blank" >10.1007/s10844-023-00809-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evolvable transformation of knowledge graphs into human-oriented formats

  • Popis výsledku v původním jazyce

    Along with the ongoing digitalization of society, we witness a strong movement to make scientific data FAIR, machine-actionable, and available in the form of knowledge graphs. On the other hand, converting machine-actionable data from knowledge graphs back into human-oriented formats, including documents, graphical, or voice user interfaces, poses significant challenges. The solutions often build on various templates tailored to specific platforms on top of the shared underlying data. These templates suffer from limited reusability, making their adaptations difficult. Moreover, the continuous evolution of data or technological advancements requires substantial efforts to maintain these templates over time. In general, these challenges increase software development costs and are error-prone. In this paper, we propose a solution based on Normalized Systems Theory to address this challenge with the aim of achieving evolvability and sustainability in the transformation process of knowledge graphs into human-oriented formats with broad applicability across domains and technologies. We explain the theoretical foundation and design theorems used in our solution and outline the approach and implementation details. We theoretically evaluate our solution by comparing it to the traditional approach, where the systems are crafted manually. The evaluation shows that our solution is more efficient and effective on a large scale, reducing the human labor required to maintain various templates and supported target platforms. Next, we demonstrate the technical feasibility of our solution on a proof-of-concept implementation in a domain of data management planning that may also serve as a basis for future development.

  • Název v anglickém jazyce

    Evolvable transformation of knowledge graphs into human-oriented formats

  • Popis výsledku anglicky

    Along with the ongoing digitalization of society, we witness a strong movement to make scientific data FAIR, machine-actionable, and available in the form of knowledge graphs. On the other hand, converting machine-actionable data from knowledge graphs back into human-oriented formats, including documents, graphical, or voice user interfaces, poses significant challenges. The solutions often build on various templates tailored to specific platforms on top of the shared underlying data. These templates suffer from limited reusability, making their adaptations difficult. Moreover, the continuous evolution of data or technological advancements requires substantial efforts to maintain these templates over time. In general, these challenges increase software development costs and are error-prone. In this paper, we propose a solution based on Normalized Systems Theory to address this challenge with the aim of achieving evolvability and sustainability in the transformation process of knowledge graphs into human-oriented formats with broad applicability across domains and technologies. We explain the theoretical foundation and design theorems used in our solution and outline the approach and implementation details. We theoretically evaluate our solution by comparing it to the traditional approach, where the systems are crafted manually. The evaluation shows that our solution is more efficient and effective on a large scale, reducing the human labor required to maintain various templates and supported target platforms. Next, we demonstrate the technical feasibility of our solution on a proof-of-concept implementation in a domain of data management planning that may also serve as a basis for future development.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Intelligent Information Systems

  • ISSN

    0925-9902

  • e-ISSN

    1573-7675

  • Svazek periodika

    62

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    22

  • Strana od-do

    295-316

  • Kód UT WoS článku

    001068482700001

  • EID výsledku v databázi Scopus

    2-s2.0-85171756077