The Parameterized Complexity of Maximum Betweenness Centrality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00372064" target="_blank" >RIV/68407700:21240/24:00372064 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-981-97-2340-9_19" target="_blank" >https://doi.org/10.1007/978-981-97-2340-9_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-2340-9_19" target="_blank" >10.1007/978-981-97-2340-9_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Parameterized Complexity of Maximum Betweenness Centrality
Popis výsledku v původním jazyce
Arguably, one of the most central tasks in the area of social network analysis is to identify important members and communities of a given network. The importance of an agent is traditionally measured using some well-defined notion of centrality. In this work, we focus on betweenness centrality, which is based on the number of shortest paths that an agent intersects. This measure can be naturally generalized from a single agent to a group of agents. Specifically, we study the computation complexity of the k-Maximum Betweenness Centrality problem, which consists in finding a group of size $k$ whose betweenness centrality exceeds a given threshold. Since this problem is NP-complete in general, we use the framework of parameterized complexity to reveal at least some tractable fragments. From this perspective, we show that the problem is W[1]-hard and in XP when parameterized by the group size $k$. As the threshold value is not a useful parameter in this context, we focus on the structural restrictions of the underlying social network. In this direction, we show that the problem admits FPT algorithms with respect to the vertex cover number, the distance to clique, or the twin-cover number and the group size combined.
Název v anglickém jazyce
The Parameterized Complexity of Maximum Betweenness Centrality
Popis výsledku anglicky
Arguably, one of the most central tasks in the area of social network analysis is to identify important members and communities of a given network. The importance of an agent is traditionally measured using some well-defined notion of centrality. In this work, we focus on betweenness centrality, which is based on the number of shortest paths that an agent intersects. This measure can be naturally generalized from a single agent to a group of agents. Specifically, we study the computation complexity of the k-Maximum Betweenness Centrality problem, which consists in finding a group of size $k$ whose betweenness centrality exceeds a given threshold. Since this problem is NP-complete in general, we use the framework of parameterized complexity to reveal at least some tractable fragments. From this perspective, we show that the problem is W[1]-hard and in XP when parameterized by the group size $k$. As the threshold value is not a useful parameter in this context, we focus on the structural restrictions of the underlying social network. In this direction, we show that the problem admits FPT algorithms with respect to the vertex cover number, the distance to clique, or the twin-cover number and the group size combined.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-19557S" target="_blank" >GA22-19557S: Nové výzvy ve výpočetní socální volbě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th Annual Conference on Theory and Applications of Models of Computation, TAMC 2024
ISBN
978-981-97-2339-3
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
221-233
Název nakladatele
Springer Nature Singapore Pte Ltd.
Místo vydání
—
Místo konání akce
Hong Kong
Datum konání akce
13. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001288414000019