Exact Algorithms and Lowerbounds for Multiagent Path Finding: Power of Treelike Topology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00374774" target="_blank" >RIV/68407700:21240/24:00374774 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/aaai.v38i16.29686" target="_blank" >https://doi.org/10.1609/aaai.v38i16.29686</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v38i16.29686" target="_blank" >10.1609/aaai.v38i16.29686</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exact Algorithms and Lowerbounds for Multiagent Path Finding: Power of Treelike Topology
Popis výsledku v původním jazyce
In the Multiagent Path Finding (MAPF for short) problem, we focus on efficiently finding non-colliding paths for a set of k agents on a given graph G, where each agent seeks a path from its source vertex to a target. An important measure of the quality of the solution is the length of the proposed schedule l, that is, the length of a longest path (including the waiting time). In this work, we propose a systematic study under the parameterized complexity framework. The hardness results we provide align with many heuristics used for this problem, whose running time could potentially be improved based on our Fixed-Parameter Tractability (FPT) results. We show that MAPF is W[1]-hard with respect to k (even if k is combined with the maximum degree of the input graph). The problem remains NP-hard in planar graphs even if the maximum degree and the makespan l are fixed constants. On the positive side, we show an FPT algorithm for k+l. As we continue, the structure of G comes into play. We give an FPT algorithm for parameter k plus the diameter of the graph G. The MAPF problem is W[1]-hard for cliquewidth of G plus l while it is FPT for treewidth of G plus l.
Název v anglickém jazyce
Exact Algorithms and Lowerbounds for Multiagent Path Finding: Power of Treelike Topology
Popis výsledku anglicky
In the Multiagent Path Finding (MAPF for short) problem, we focus on efficiently finding non-colliding paths for a set of k agents on a given graph G, where each agent seeks a path from its source vertex to a target. An important measure of the quality of the solution is the length of the proposed schedule l, that is, the length of a longest path (including the waiting time). In this work, we propose a systematic study under the parameterized complexity framework. The hardness results we provide align with many heuristics used for this problem, whose running time could potentially be improved based on our Fixed-Parameter Tractability (FPT) results. We show that MAPF is W[1]-hard with respect to k (even if k is combined with the maximum degree of the input graph). The problem remains NP-hard in planar graphs even if the maximum degree and the makespan l are fixed constants. On the positive side, we show an FPT algorithm for k+l. As we continue, the structure of G comes into play. We give an FPT algorithm for parameter k plus the diameter of the graph G. The MAPF problem is W[1]-hard for cliquewidth of G plus l while it is FPT for treewidth of G plus l.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 38th AAAI Conference on Artificial Intelligence
ISBN
—
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
9
Strana od-do
17380-17388
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
Vancouver
Datum konání akce
20. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001239323500011