Combining Local and Global Weather Data to Improve Forecast Accuracy for Agriculture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00380559" target="_blank" >RIV/68407700:21240/24:00380559 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.15439/2024F5990" target="_blank" >https://doi.org/10.15439/2024F5990</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15439/2024F5990" target="_blank" >10.15439/2024F5990</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining Local and Global Weather Data to Improve Forecast Accuracy for Agriculture
Popis výsledku v původním jazyce
Accurate local weather forecasting is vital for farmers to optimize crop yields and manage resources effectively, but existing forecasts often lack the precision required locally. This study explores the potential of combining data from local weather stations with global forecasts and reanalysis data to improve the accuracy of local weather predictions. We propose integrating the HadISD data set, which contains data from 27 stations in the Czech Republic, with the Global Forecast System predictions and ERA5-Land reanalysis data. Our goal is to improve 24-hour weather forecasts using Multilayer Perceptrons, CatBoost, and Long Short-Term Memory neural networks. The findings demonstrate that combining local weather station data with global forecasts and incorporating ERA5-Land reanalysis data improves the accuracy of weather predictions in specific locations. Notably, using deep learning to estimate ERA5-Land data and including this estimation in the final model reduced the forecasting error by 59%. This advancement holds promise in optimizing agricultural practices and mitigating weather-related risks in the region.
Název v anglickém jazyce
Combining Local and Global Weather Data to Improve Forecast Accuracy for Agriculture
Popis výsledku anglicky
Accurate local weather forecasting is vital for farmers to optimize crop yields and manage resources effectively, but existing forecasts often lack the precision required locally. This study explores the potential of combining data from local weather stations with global forecasts and reanalysis data to improve the accuracy of local weather predictions. We propose integrating the HadISD data set, which contains data from 27 stations in the Czech Republic, with the Global Forecast System predictions and ERA5-Land reanalysis data. Our goal is to improve 24-hour weather forecasts using Multilayer Perceptrons, CatBoost, and Long Short-Term Memory neural networks. The findings demonstrate that combining local weather station data with global forecasts and incorporating ERA5-Land reanalysis data improves the accuracy of weather predictions in specific locations. Notably, using deep learning to estimate ERA5-Land data and including this estimation in the final model reduced the forecasting error by 59%. This advancement holds promise in optimizing agricultural practices and mitigating weather-related risks in the region.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Communication Papers of the 19th Conference on Computer Science and Intelligence Systems
ISBN
978-83-973291-0-2
ISSN
2300-5963
e-ISSN
2300-5963
Počet stran výsledku
6
Strana od-do
77-82
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
—
Místo konání akce
Belgrade
Datum konání akce
8. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—