Car simulation and virtual environments for investigation of driver behavior
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F05%3A00317794" target="_blank" >RIV/68407700:21260/05:00317794 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.nnw.cz" target="_blank" >http://www.nnw.cz</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Car simulation and virtual environments for investigation of driver behavior
Popis výsledku v původním jazyce
The operator is required to be constantly vigilant and even more attentive when operating the device. The paper introduces a cooperation of a car simulator realized in the virtual reality (VR) environments and measurements of "human driver behavior" focused mainly on the aspects of HMI and drivers' attention decrease. In the first part a conception and a development of our VR car simulation devices are described. During the development of the car simulators many problems need to be solved. One of these problems is represented by a simplification and a partial automation of a scenery creation. The first part is dedicated to the algorithms used in our tools, which help to automate the creation of virtual scenes. The next part analyses, in greater detail, the tools themselves and the rest of this section deals with demonstration of the scenes, which were modeled using these tools. For simpler and faster generation of virtual sceneries it is suitable to store the models within a hierarchical database 3D object. Our database includes model objects from which it subsequently forms surroundings for the road virtual scenes. In the article is described how to specify the 3D model properties - their fundamental characteristic and consequent differentiation into specific categories. Sound perception cues are one of the most important ones besides the visual cues in the car simulation. The audio section of this article deals with simulating a sound of a car engine as a most significant audio stimulant for the driver. It shows the basics of the cross fading system which renders the car audio from multiple looped samples. The first part contains an analysis of car engine sound, the second part describes how to synthesize it on the computer. Validation measurements and consequent results are shown at the end of this section. The final paragraphs show examples of experiments developed for measurements of the driver's fatigue and other aspects of the driver's behavior.
Název v anglickém jazyce
Car simulation and virtual environments for investigation of driver behavior
Popis výsledku anglicky
The operator is required to be constantly vigilant and even more attentive when operating the device. The paper introduces a cooperation of a car simulator realized in the virtual reality (VR) environments and measurements of "human driver behavior" focused mainly on the aspects of HMI and drivers' attention decrease. In the first part a conception and a development of our VR car simulation devices are described. During the development of the car simulators many problems need to be solved. One of these problems is represented by a simplification and a partial automation of a scenery creation. The first part is dedicated to the algorithms used in our tools, which help to automate the creation of virtual scenes. The next part analyses, in greater detail, the tools themselves and the rest of this section deals with demonstration of the scenes, which were modeled using these tools. For simpler and faster generation of virtual sceneries it is suitable to store the models within a hierarchical database 3D object. Our database includes model objects from which it subsequently forms surroundings for the road virtual scenes. In the article is described how to specify the 3D model properties - their fundamental characteristic and consequent differentiation into specific categories. Sound perception cues are one of the most important ones besides the visual cues in the car simulation. The audio section of this article deals with simulating a sound of a car engine as a most significant audio stimulant for the driver. It shows the basics of the cross fading system which renders the car audio from multiple looped samples. The first part contains an analysis of car engine sound, the second part describes how to synthesize it on the computer. Validation measurements and consequent results are shown at the end of this section. The final paragraphs show examples of experiments developed for measurements of the driver's fatigue and other aspects of the driver's behavior.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/1K04102" target="_blank" >1K04102: Interakce člověk - umělý systém</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
15
Strana od-do
149-163
Kód UT WoS článku
000232532200005
EID výsledku v databázi Scopus
—