Automatic Detection of Flight Maneuvers with the Use of Density-based Clustering Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F18%3A00322802" target="_blank" >RIV/68407700:21260/18:00322802 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21460/18:00322802
Výsledek na webu
<a href="http://dx.doi.org/10.1109/NTAD.2018.8551680" target="_blank" >http://dx.doi.org/10.1109/NTAD.2018.8551680</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NTAD.2018.8551680" target="_blank" >10.1109/NTAD.2018.8551680</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Detection of Flight Maneuvers with the Use of Density-based Clustering Algorithm
Popis výsledku v původním jazyce
Ever-changing situation in the aviation demands a change in flight training programs that would reflect present needs and threats in contrary to the traditional training that didn’t changed much for decades. Therefore, new alternative training concepts have been developed that cover these needs. However, these concepts do not apply to initial training which seem to be a crucial phase of a pilot training. Thus, the aim was to create a software solution that would identify individual flight maneuvers and evaluate them so that the overall evaluation would be done by considering objective evaluation and flight instructors’ subjective expertise. A study was done with strictly given flight schedules. For the purpose of automatic maneuver detection, density-based spatial clustering of applications with noise – DBSCAN clustering algorithm was used, which could determine maneuvers and thus exclude the noise from clusters of maneuvers. The results indicate that the proposed solution was able to identify the prescribed maneuvers with high sensitivity. The solution could be extended in the future to identify all flight maneuvers considering as many parameters from flight data recorder as possible and thus carry out complete objectively based pilot performance evaluation.
Název v anglickém jazyce
Automatic Detection of Flight Maneuvers with the Use of Density-based Clustering Algorithm
Popis výsledku anglicky
Ever-changing situation in the aviation demands a change in flight training programs that would reflect present needs and threats in contrary to the traditional training that didn’t changed much for decades. Therefore, new alternative training concepts have been developed that cover these needs. However, these concepts do not apply to initial training which seem to be a crucial phase of a pilot training. Thus, the aim was to create a software solution that would identify individual flight maneuvers and evaluate them so that the overall evaluation would be done by considering objective evaluation and flight instructors’ subjective expertise. A study was done with strictly given flight schedules. For the purpose of automatic maneuver detection, density-based spatial clustering of applications with noise – DBSCAN clustering algorithm was used, which could determine maneuvers and thus exclude the noise from clusters of maneuvers. The results indicate that the proposed solution was able to identify the prescribed maneuvers with high sensitivity. The solution could be extended in the future to identify all flight maneuvers considering as many parameters from flight data recorder as possible and thus carry out complete objectively based pilot performance evaluation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of New Trends in Aviation Development 2018. The XIII. International Scientific Conference
ISBN
978-1-5386-7918-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
82-86
Název nakladatele
Czechoslovakia Section IEEE
Místo vydání
Prague
Místo konání akce
Košice
Datum konání akce
30. 8. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—