Sensory network for ammonia detection in airport premises
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F19%3A00334758" target="_blank" >RIV/68407700:21260/19:00334758 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sensory network for ammonia detection in airport premises
Popis výsledku v původním jazyce
Since the beginning, aviation has been exposed to the risk of threats of unlawful acts, such as attacks, hijacks, or bomb attacks. The priority of current safety systems is to eliminate the risk of possible unlawful acts to critical infrastructure. However, tightening the net of security checks has a downside - individuals or organizations execute the act of violence even before the baggage security check done by mainstream spectroscopic methods. Thus, airport terminals with large crowd concentration are becoming a perfect target for terrorists to attack. A factor contributing to forming a crowd is a thorough, time-consuming security check. In a short time, the crowd concentration rapidly increases in an unsecured perimeter and as such, is an easy target. Man-made explosives, as well as several military, industry or difficult to access, have a common component - ammonia. Bombs could be made by various forms of ammonia, like ammonium nitrate, chloraminȩ or a compound of ammonia and aluminum oxide. For that reason, the detection of ammonia present in airports becomes a frequently discussed topic among aviation security experts. The paper aims to create a concept of the sensory network able to monitor in 2D or localize a source of ammonia trace elements. The proposed idea is intended to use in airports, but the concept is also applicable in places where a noninvasive and contact-less passenger or baggage security check is needed.
Název v anglickém jazyce
Sensory network for ammonia detection in airport premises
Popis výsledku anglicky
Since the beginning, aviation has been exposed to the risk of threats of unlawful acts, such as attacks, hijacks, or bomb attacks. The priority of current safety systems is to eliminate the risk of possible unlawful acts to critical infrastructure. However, tightening the net of security checks has a downside - individuals or organizations execute the act of violence even before the baggage security check done by mainstream spectroscopic methods. Thus, airport terminals with large crowd concentration are becoming a perfect target for terrorists to attack. A factor contributing to forming a crowd is a thorough, time-consuming security check. In a short time, the crowd concentration rapidly increases in an unsecured perimeter and as such, is an easy target. Man-made explosives, as well as several military, industry or difficult to access, have a common component - ammonia. Bombs could be made by various forms of ammonia, like ammonium nitrate, chloraminȩ or a compound of ammonia and aluminum oxide. For that reason, the detection of ammonia present in airports becomes a frequently discussed topic among aviation security experts. The paper aims to create a concept of the sensory network able to monitor in 2D or localize a source of ammonia trace elements. The proposed idea is intended to use in airports, but the concept is also applicable in places where a noninvasive and contact-less passenger or baggage security check is needed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
TRANSPORT MEANS 2019 - PROCEEDINGS OF THE 23rd INTERNATIONAL SCIENTIFIC CONFERENCE
ISBN
—
ISSN
1822-296X
e-ISSN
2351-7034
Počet stran výsledku
6
Strana od-do
1197-1202
Název nakladatele
Kaunas University of Technology
Místo vydání
Kaunas
Místo konání akce
Palanga
Datum konání akce
2. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—