Analyzing Aircraft Maintenance Findings with Natural Language Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F22%3A00362129" target="_blank" >RIV/68407700:21260/22:00362129 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.trpro.2022.11.028" target="_blank" >https://doi.org/10.1016/j.trpro.2022.11.028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.trpro.2022.11.028" target="_blank" >10.1016/j.trpro.2022.11.028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing Aircraft Maintenance Findings with Natural Language Processing
Popis výsledku v původním jazyce
Aircraft maintenance at the technical base includes both scheduled and unscheduled repairs. When performing repairs, there are detailed inspections of aircraft, which are ordered in advance by the customer. During these inspections, it is possible to detect other unsatisfactory condition of the aircraft in terms of continuing airworthiness, which needs to be corrected. These unplanned failures are findings and are entered into the maintenance organization's system, which is required to keep records of activities performed on the aircraft. Finding descriptions are created by technicians and are usually stored as unstructured text that does not allow subsequent analysis with a database of such records. The presented work performs automatic text analysis of findings using a dedicated software tool. For the purpose of the analysis, a lexicon was created, with components and failures appearing in maintenance records. The lexicon was used in automatic text analysis, where the output was a statistic of the most frequent components and failures in the stored maintenance data. This statistic can be used for maintenance planning optimization and better prediction of unscheduled repairs.
Název v anglickém jazyce
Analyzing Aircraft Maintenance Findings with Natural Language Processing
Popis výsledku anglicky
Aircraft maintenance at the technical base includes both scheduled and unscheduled repairs. When performing repairs, there are detailed inspections of aircraft, which are ordered in advance by the customer. During these inspections, it is possible to detect other unsatisfactory condition of the aircraft in terms of continuing airworthiness, which needs to be corrected. These unplanned failures are findings and are entered into the maintenance organization's system, which is required to keep records of activities performed on the aircraft. Finding descriptions are created by technicians and are usually stored as unstructured text that does not allow subsequent analysis with a database of such records. The presented work performs automatic text analysis of findings using a dedicated software tool. For the purpose of the analysis, a lexicon was created, with components and failures appearing in maintenance records. The lexicon was used in automatic text analysis, where the output was a statistic of the most frequent components and failures in the stored maintenance data. This statistic can be used for maintenance planning optimization and better prediction of unscheduled repairs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20304 - Aerospace engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/CK01000204" target="_blank" >CK01000204: Zvýšení efektivity plánování a provádění údržby dopravních letadel</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Transportation Research Procedia
ISBN
—
ISSN
2352-1457
e-ISSN
2352-1465
Počet stran výsledku
8
Strana od-do
238-245
Název nakladatele
Elsevier B.V.
Místo vydání
Amsterdam
Místo konání akce
Bratislava
Datum konání akce
9. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—