Solving Transport Infrastructure Investment Project Selection and Scheduling Using Genetic Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F24%3A00377641" target="_blank" >RIV/68407700:21260/24:00377641 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/math12193056" target="_blank" >https://doi.org/10.3390/math12193056</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math12193056" target="_blank" >10.3390/math12193056</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving Transport Infrastructure Investment Project Selection and Scheduling Using Genetic Algorithms
Popis výsledku v původním jazyce
The development of transport infrastructure is crucial for economic growth, social connectivity, and sustainable development. Many countries have historically underinvested in transport infrastructure, necessitating more efficient strategic planning in the implementation of transport infrastructure investment projects. This article addresses the selection and scheduling of transport infrastructure projects, specifically within the context of utilizing pre-allocated funds within a multi-annual budget investment program. The current decision-making process relies heavily on expert judgment and lacks quantitative decision support methods. We propose a genetic algorithm as a decision-support tool, framing the problem as an NP-hard 0-1 multiple knapsack problem. The proposed genetic algorithm (GA) is unique for its matrix-encoded chromosomes, specially designed genetic operators, and a customized repair operator to address the large number of invalid chromosomes generated during the GA computation. In computational experiments, the proposed GA is compared to an exact solution and proves to be efficient in terms of quality of obtained solutions and computational time, with an average computational time of 108 s and the quality of obtained solutions typically ranging between 85% and 95% of the optimal solution. These results highlight the potential of the proposed GA to enhance strategic decision-making in transport infrastructure development.
Název v anglickém jazyce
Solving Transport Infrastructure Investment Project Selection and Scheduling Using Genetic Algorithms
Popis výsledku anglicky
The development of transport infrastructure is crucial for economic growth, social connectivity, and sustainable development. Many countries have historically underinvested in transport infrastructure, necessitating more efficient strategic planning in the implementation of transport infrastructure investment projects. This article addresses the selection and scheduling of transport infrastructure projects, specifically within the context of utilizing pre-allocated funds within a multi-annual budget investment program. The current decision-making process relies heavily on expert judgment and lacks quantitative decision support methods. We propose a genetic algorithm as a decision-support tool, framing the problem as an NP-hard 0-1 multiple knapsack problem. The proposed genetic algorithm (GA) is unique for its matrix-encoded chromosomes, specially designed genetic operators, and a customized repair operator to address the large number of invalid chromosomes generated during the GA computation. In computational experiments, the proposed GA is compared to an exact solution and proves to be efficient in terms of quality of obtained solutions and computational time, with an average computational time of 108 s and the quality of obtained solutions typically ranging between 85% and 95% of the optimal solution. These results highlight the potential of the proposed GA to enhance strategic decision-making in transport infrastructure development.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
12
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
28
Strana od-do
1-28
Kód UT WoS článku
001331978300001
EID výsledku v databázi Scopus
2-s2.0-85206564758