Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solving Transport Infrastructure Investment Project Selection and Scheduling Using Genetic Algorithms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F24%3A00377641" target="_blank" >RIV/68407700:21260/24:00377641 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/math12193056" target="_blank" >https://doi.org/10.3390/math12193056</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math12193056" target="_blank" >10.3390/math12193056</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solving Transport Infrastructure Investment Project Selection and Scheduling Using Genetic Algorithms

  • Popis výsledku v původním jazyce

    The development of transport infrastructure is crucial for economic growth, social connectivity, and sustainable development. Many countries have historically underinvested in transport infrastructure, necessitating more efficient strategic planning in the implementation of transport infrastructure investment projects. This article addresses the selection and scheduling of transport infrastructure projects, specifically within the context of utilizing pre-allocated funds within a multi-annual budget investment program. The current decision-making process relies heavily on expert judgment and lacks quantitative decision support methods. We propose a genetic algorithm as a decision-support tool, framing the problem as an NP-hard 0-1 multiple knapsack problem. The proposed genetic algorithm (GA) is unique for its matrix-encoded chromosomes, specially designed genetic operators, and a customized repair operator to address the large number of invalid chromosomes generated during the GA computation. In computational experiments, the proposed GA is compared to an exact solution and proves to be efficient in terms of quality of obtained solutions and computational time, with an average computational time of 108 s and the quality of obtained solutions typically ranging between 85% and 95% of the optimal solution. These results highlight the potential of the proposed GA to enhance strategic decision-making in transport infrastructure development.

  • Název v anglickém jazyce

    Solving Transport Infrastructure Investment Project Selection and Scheduling Using Genetic Algorithms

  • Popis výsledku anglicky

    The development of transport infrastructure is crucial for economic growth, social connectivity, and sustainable development. Many countries have historically underinvested in transport infrastructure, necessitating more efficient strategic planning in the implementation of transport infrastructure investment projects. This article addresses the selection and scheduling of transport infrastructure projects, specifically within the context of utilizing pre-allocated funds within a multi-annual budget investment program. The current decision-making process relies heavily on expert judgment and lacks quantitative decision support methods. We propose a genetic algorithm as a decision-support tool, framing the problem as an NP-hard 0-1 multiple knapsack problem. The proposed genetic algorithm (GA) is unique for its matrix-encoded chromosomes, specially designed genetic operators, and a customized repair operator to address the large number of invalid chromosomes generated during the GA computation. In computational experiments, the proposed GA is compared to an exact solution and proves to be efficient in terms of quality of obtained solutions and computational time, with an average computational time of 108 s and the quality of obtained solutions typically ranging between 85% and 95% of the optimal solution. These results highlight the potential of the proposed GA to enhance strategic decision-making in transport infrastructure development.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    28

  • Strana od-do

    1-28

  • Kód UT WoS článku

    001331978300001

  • EID výsledku v databázi Scopus

    2-s2.0-85206564758