On Convergence of Fisher Informations in Continuous Models with Quantized Observation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F05%3A00117073" target="_blank" >RIV/68407700:21340/05:00117073 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Convergence of Fisher Informations in Continuous Models with Quantized Observation
Popis výsledku v původním jazyce
Continuous location models with real observations and well defined Fisher information are considered and reduction of the Fisher information due to quantizations of the observation space into m intervals is studied. In fact, generalized Fisher informations of orders alpha >= 1 are considered where alpha =2 corresponds to the classical Fisher information. By an example it is argued that in some models the information of order alpha =2 is infinite while the informations of some orders alpha <> 2 are finite. Among the studied problems is the existence of optimal quantizations which maximize the reduced information for fixed m and alpha >= 1 and the construction of simple and practically applicable quantizations for which the reduction converges to zero when m is going to infinity, uniformly for all alpha >= 1. The rate of this convergence is estimated for all alpha >= 1 and directly evaluated for alpha= 1 and alpha=2.
Název v anglickém jazyce
On Convergence of Fisher Informations in Continuous Models with Quantized Observation
Popis výsledku anglicky
Continuous location models with real observations and well defined Fisher information are considered and reduction of the Fisher information due to quantizations of the observation space into m intervals is studied. In fact, generalized Fisher informations of orders alpha >= 1 are considered where alpha =2 corresponds to the classical Fisher information. By an example it is argued that in some models the information of order alpha =2 is infinite while the informations of some orders alpha <> 2 are finite. Among the studied problems is the existence of optimal quantizations which maximize the reduced information for fixed m and alpha >= 1 and the construction of simple and practically applicable quantizations for which the reduction converges to zero when m is going to infinity, uniformly for all alpha >= 1. The rate of this convergence is estimated for all alpha >= 1 and directly evaluated for alpha= 1 and alpha=2.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Test
ISSN
1133-0686
e-ISSN
—
Svazek periodika
2005
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
29
Strana od-do
151-179
Kód UT WoS článku
000230291400006
EID výsledku v databázi Scopus
—