Spectral properties of non-gaussian random matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F10%3A00187717" target="_blank" >RIV/68407700:21340/10:00187717 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectral properties of non-gaussian random matrices
Popis výsledku v původním jazyce
The main topic of this article is spectral analysis of random matrices. It is well known that distribution of normalized eigenvalues of general and real gaussian matrices is de- scribed by the Girko's circle law, i.e. eigenvalues of matrix lie inside ofunit circle centered to origin of the complex plain. If the random matrix is symmetrical the distribution of eigenval- ues is described by Wigner's semicircle law. Furthermore, the so-called spacing distribution is investigated. This variable is random and its distribution is described by Izrailev's formula. Generalizations of these laws for non-gaussian matrices are introduced. Numerical tests (imple- mented in MATLAB) have shown that properties of eigenvalues of real non-gaussian matrices are in°uenced by variance of elements of matrix only and they are independent of their distribution. The mentioned tests were executed for matrices with elements chosen from uniform, Poissonian and gamma distribution. Moreover, the hypothesis about g
Název v anglickém jazyce
Spectral properties of non-gaussian random matrices
Popis výsledku anglicky
The main topic of this article is spectral analysis of random matrices. It is well known that distribution of normalized eigenvalues of general and real gaussian matrices is de- scribed by the Girko's circle law, i.e. eigenvalues of matrix lie inside ofunit circle centered to origin of the complex plain. If the random matrix is symmetrical the distribution of eigenval- ues is described by Wigner's semicircle law. Furthermore, the so-called spacing distribution is investigated. This variable is random and its distribution is described by Izrailev's formula. Generalizations of these laws for non-gaussian matrices are introduced. Numerical tests (imple- mented in MATLAB) have shown that properties of eigenvalues of real non-gaussian matrices are in°uenced by variance of elements of matrix only and they are independent of their distribution. The mentioned tests were executed for matrices with elements chosen from uniform, Poissonian and gamma distribution. Moreover, the hypothesis about g
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SPMS 2010 Stochastic and Physical Monitoring Systems
ISBN
978-80-01-04641-8
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
1-12
Název nakladatele
ČVUT
Místo vydání
Praha
Místo konání akce
Děčín
Datum konání akce
27. 6. 2010
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—