Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Overview and latest proposals in SBS PCM based IFE technology featuring self-navigation of lasers on injected direct drive pellets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00374752" target="_blank" >RIV/68407700:21340/11:00374752 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://info.fusion.ciemat.es/OCS/EPS2011PAP/pdf/PD4.05.pdf" target="_blank" >https://info.fusion.ciemat.es/OCS/EPS2011PAP/pdf/PD4.05.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Overview and latest proposals in SBS PCM based IFE technology featuring self-navigation of lasers on injected direct drive pellets

  • Popis výsledku v původním jazyce

    One of the very difficult challenges to deal with in the inertial fusion energy (IFE) integrated approach is connected with the need of simultaneous and very precise irradiation of injected pellets containing thermonuclear fuel inside the reactor chamber by many dozens (or even hundreds) of powerful laser beams. Sophisticated tracking of injected pellets' trajectories is necessary for a reliable prediction of the place which would be the most suitable for interaction with the driver beams in order to achieve necessary spherical symmetry of irradiation required for subsequent fuel compression and burn. For the direct drive scheme the following set of parameters is being currently considered: pellets of ~ 4 mm in diameter should be delivered into the virtual sphere of ~ 5 mm in diameter located around the center of the reactor chamber ~ 10 m in diameter. Combined precision of tracking and aiming should be ~ 20 μm. Navigation technologies developed so far are gradually approaching the required margin in the case of fully evacuated reactor chambers. However, in its practical use, there are serious obstacles complicating this direct drive IFE scheme – even putting its feasibility in doubts. Among the most serious ones is the insufficient predictability of the injected pellets' trajectories resulting from their expected interaction with remnants of previous fusion explosions due to the considered 5-10 Hz repetition rate. Hence some time consuming adjustment of heavy final optics for every shot and every laser beam is always necessary. This fact is partially responsible for a rather tight margin ~ 500 μm on the pellets successful delivery into the above mentioned virtual sphere. This might be also one of the reasons why the indirect drive scheme seems to be currently considered as a more serious IFE candidate - having the corresponding hohlraum targets by three orders of magnitude heavier compared to their direct drive counterparts, thus allowing for much more reliable prediction of their trajectories.

  • Název v anglickém jazyce

    Overview and latest proposals in SBS PCM based IFE technology featuring self-navigation of lasers on injected direct drive pellets

  • Popis výsledku anglicky

    One of the very difficult challenges to deal with in the inertial fusion energy (IFE) integrated approach is connected with the need of simultaneous and very precise irradiation of injected pellets containing thermonuclear fuel inside the reactor chamber by many dozens (or even hundreds) of powerful laser beams. Sophisticated tracking of injected pellets' trajectories is necessary for a reliable prediction of the place which would be the most suitable for interaction with the driver beams in order to achieve necessary spherical symmetry of irradiation required for subsequent fuel compression and burn. For the direct drive scheme the following set of parameters is being currently considered: pellets of ~ 4 mm in diameter should be delivered into the virtual sphere of ~ 5 mm in diameter located around the center of the reactor chamber ~ 10 m in diameter. Combined precision of tracking and aiming should be ~ 20 μm. Navigation technologies developed so far are gradually approaching the required margin in the case of fully evacuated reactor chambers. However, in its practical use, there are serious obstacles complicating this direct drive IFE scheme – even putting its feasibility in doubts. Among the most serious ones is the insufficient predictability of the injected pellets' trajectories resulting from their expected interaction with remnants of previous fusion explosions due to the considered 5-10 Hz repetition rate. Hence some time consuming adjustment of heavy final optics for every shot and every laser beam is always necessary. This fact is partially responsible for a rather tight margin ~ 500 μm on the pellets successful delivery into the above mentioned virtual sphere. This might be also one of the reasons why the indirect drive scheme seems to be currently considered as a more serious IFE candidate - having the corresponding hohlraum targets by three orders of magnitude heavier compared to their direct drive counterparts, thus allowing for much more reliable prediction of their trajectories.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Europhysics Conference Abstracts. 38th EPS Conference on Plasma Physics

  • ISBN

    978-1-61839-593-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    1856-1859

  • Název nakladatele

    European Physical Society

  • Místo vydání

    Mulhouse

  • Místo konání akce

    Strasbourg

  • Datum konání akce

    27. 6. 2011

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku