Theoretical study of optical switching in multiple core nonlinear microstructured optical fibers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00369337" target="_blank" >RIV/68407700:21340/12:00369337 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985882:_____/12:00396766
Výsledek na webu
<a href="https://doi.org/10.1117/12.2008658" target="_blank" >https://doi.org/10.1117/12.2008658</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2008658" target="_blank" >10.1117/12.2008658</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Theoretical study of optical switching in multiple core nonlinear microstructured optical fibers
Popis výsledku v původním jazyce
In this study, several approaches to optical switching in multiple core nonlinear microstructured optical fibers are presented. All approaches are based on coupling between the cores of a fiber. Based on Kerr effect, coupling is tuned and detuned by the switching signal. The propagation constants and field distributions are calculated using our in-house fullvectorial finite element mode solver. Copropagation of the signals at the switching and data wavelengths in a multiple core microstructured optical fiber is analyzed using the finite element beam propagation method and coupled mode theory. The crucial factor for successful implementation is the fabrication tolerance. Therefore, the dependence of the coupling efficiency on geometry tolerances is also analyzed. From these inaccuracies, the necessary coupling strength and consequently the switching power are deduced. It is shown that for an accuracy of about 2%, the necessary switching power is approximately 26 W in chalcogenide glass fibers.
Název v anglickém jazyce
Theoretical study of optical switching in multiple core nonlinear microstructured optical fibers
Popis výsledku anglicky
In this study, several approaches to optical switching in multiple core nonlinear microstructured optical fibers are presented. All approaches are based on coupling between the cores of a fiber. Based on Kerr effect, coupling is tuned and detuned by the switching signal. The propagation constants and field distributions are calculated using our in-house fullvectorial finite element mode solver. Copropagation of the signals at the switching and data wavelengths in a multiple core microstructured optical fiber is analyzed using the finite element beam propagation method and coupled mode theory. The crucial factor for successful implementation is the fabrication tolerance. Therefore, the dependence of the coupling efficiency on geometry tolerances is also analyzed. From these inaccuracies, the necessary coupling strength and consequently the switching power are deduced. It is shown that for an accuracy of about 2%, the necessary switching power is approximately 26 W in chalcogenide glass fibers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. SPIE 8697, 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics
ISBN
978-0-8194-9481-8
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
SPIE
Místo vydání
Bellingham (stát Washington)
Místo konání akce
Ostravice
Datum konání akce
3. 9. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000319864100053