Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00209124" target="_blank" >RIV/68407700:21340/14:00209124 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jcp.2013.10.050" target="_blank" >http://dx.doi.org/10.1016/j.jcp.2013.10.050</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcp.2013.10.050" target="_blank" >10.1016/j.jcp.2013.10.050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods
Popis výsledku v původním jazyce
Remapping is one of the essential parts of most multi-material Arbitrary Lagrangian?Eulerian (ALE) methods. In this paper, we present a new remapping approach in the framework of 2D staggered multi-material ALE on logically rectangular meshes. It is based on the computation of the second-order material mass fluxes (using intersections/overlays) to all neighboring cells, including the corner neighbors. Fluid mass is then remapped in a flux form as well as all other fluid quantities (internal energy, pressure). We pay a special attention to the remap of nodal quantities, performed also in a flux form. An optimization-based approach is used for the construction of the nodal mass fluxes. The flux-corrected remap (FCR) approach for flux limiting is employedfor the nodal velocity remap, which enforces bound preservation of the remapped constructed velocity field. Several examples of numerical calculations are presented, which demonstrate properties of our remapping method in the context of
Název v anglickém jazyce
Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods
Popis výsledku anglicky
Remapping is one of the essential parts of most multi-material Arbitrary Lagrangian?Eulerian (ALE) methods. In this paper, we present a new remapping approach in the framework of 2D staggered multi-material ALE on logically rectangular meshes. It is based on the computation of the second-order material mass fluxes (using intersections/overlays) to all neighboring cells, including the corner neighbors. Fluid mass is then remapped in a flux form as well as all other fluid quantities (internal energy, pressure). We pay a special attention to the remap of nodal quantities, performed also in a flux form. An optimization-based approach is used for the construction of the nodal mass fluxes. The flux-corrected remap (FCR) approach for flux limiting is employedfor the nodal velocity remap, which enforces bound preservation of the remapped constructed velocity field. Several examples of numerical calculations are presented, which demonstrate properties of our remapping method in the context of
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GPP201%2F10%2FP086" target="_blank" >GPP201/10/P086: Multimaterialové Lagrangeovsko-Eulerovské (ALE) metody pro hydrodynamické simulace plazmatu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Physics
ISSN
0021-9991
e-ISSN
—
Svazek periodika
258
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
37
Strana od-do
268-304
Kód UT WoS článku
000329118500014
EID výsledku v databázi Scopus
—