Numerical solution for the anisotropic Willmore flow of graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00222650" target="_blank" >RIV/68407700:21340/15:00222650 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.apnum.2014.10.001" target="_blank" >http://dx.doi.org/10.1016/j.apnum.2014.10.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apnum.2014.10.001" target="_blank" >10.1016/j.apnum.2014.10.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical solution for the anisotropic Willmore flow of graphs
Popis výsledku v původním jazyce
The Willmore flow is well known problem from the differential geometry. It minimizes the Willmore functional defined as integral of the mean-curvature square over given manifold. For the graph formulation, we derive modification of the Willmore flow withanisotropic mean curvature. We define the weak solution and we prove an energy equality. We approximate the solution numerically by the complementary finite volume method. To show the stability, we re-formulate the resulting scheme in terms of the finite difference method. By using simple framework of the finite difference method (FDM) we show discrete version of the energy equality. The time discretization is done by the method of lines and the resulting system of ODEs is solved by the Runge?Kutta?Merson solver with adaptive integration step. We also show experimental order of convergence as well as results of the numerical experiments, both for several different anisotropies.
Název v anglickém jazyce
Numerical solution for the anisotropic Willmore flow of graphs
Popis výsledku anglicky
The Willmore flow is well known problem from the differential geometry. It minimizes the Willmore functional defined as integral of the mean-curvature square over given manifold. For the graph formulation, we derive modification of the Willmore flow withanisotropic mean curvature. We define the weak solution and we prove an energy equality. We approximate the solution numerically by the complementary finite volume method. To show the stability, we re-formulate the resulting scheme in terms of the finite difference method. By using simple framework of the finite difference method (FDM) we show discrete version of the energy equality. The time discretization is done by the method of lines and the resulting system of ODEs is solved by the Runge?Kutta?Merson solver with adaptive integration step. We also show experimental order of convergence as well as results of the numerical experiments, both for several different anisotropies.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000346550500001
EID výsledku v databázi Scopus
2-s2.0-84908544245