Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Energy-momentum tensors in linearized Einstein's theory and massive gravity: The question of uniqueness

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00235679" target="_blank" >RIV/68407700:21340/16:00235679 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1103/PhysRevD.93.024009" target="_blank" >http://dx.doi.org/10.1103/PhysRevD.93.024009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.93.024009" target="_blank" >10.1103/PhysRevD.93.024009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Energy-momentum tensors in linearized Einstein's theory and massive gravity: The question of uniqueness

  • Popis výsledku v původním jazyce

    The question of the uniqueness of energy-momentum tensors in the linearized general relativity and in the linear massive gravity is analyzed without using variational techniques. We start from a natural ansatz for the form of the tensor (for example, that it is a linear combination of the terms quadratic in the first derivatives), and require it to be conserved as a consequence of field equations. In the case of the linear gravity in a general gauge we find a four-parametric system of conserved second-rank tensors which contains a unique symmetric tensor. This turns out to be the linearized Landau-Lifshitz pseudotensor employed often in full general relativity. We elucidate the relation of the four-parametric system to the expression proposed recently by Butcher et al. “on physical grounds” in harmonic gauge, and we show that the results coincide in the case of high-frequency waves in vacuum after a suitable averaging. In the massive gravity we show how one can arrive at the expression which coincides with the “generalized linear symmetric Landau-Lifshitz” tensor. However, there exists another uniquely given simpler symmetric tensor which can be obtained by adding the divergence of a suitable superpotential to the canonical energy-momentum tensor following from the Fierz-Pauli action. In contrast to the symmetric tensor derived by the Belinfante procedure which involves the second derivatives of the field variables, this expression contains only the field and its first derivatives. It is simpler than the generalized Landau-Lifshitz tensor but both yield the same total quantities since they differ by the divergence of a superpotential. We also discuss the role of the gauge conditions in the proofs of the uniqueness. In the Appendix, the symbolic tensor manipulation software cadabra is briefly described. It is very effective in obtaining various results which would otherwise require lengthy calculations.

  • Název v anglickém jazyce

    Energy-momentum tensors in linearized Einstein's theory and massive gravity: The question of uniqueness

  • Popis výsledku anglicky

    The question of the uniqueness of energy-momentum tensors in the linearized general relativity and in the linear massive gravity is analyzed without using variational techniques. We start from a natural ansatz for the form of the tensor (for example, that it is a linear combination of the terms quadratic in the first derivatives), and require it to be conserved as a consequence of field equations. In the case of the linear gravity in a general gauge we find a four-parametric system of conserved second-rank tensors which contains a unique symmetric tensor. This turns out to be the linearized Landau-Lifshitz pseudotensor employed often in full general relativity. We elucidate the relation of the four-parametric system to the expression proposed recently by Butcher et al. “on physical grounds” in harmonic gauge, and we show that the results coincide in the case of high-frequency waves in vacuum after a suitable averaging. In the massive gravity we show how one can arrive at the expression which coincides with the “generalized linear symmetric Landau-Lifshitz” tensor. However, there exists another uniquely given simpler symmetric tensor which can be obtained by adding the divergence of a suitable superpotential to the canonical energy-momentum tensor following from the Fierz-Pauli action. In contrast to the symmetric tensor derived by the Belinfante procedure which involves the second derivatives of the field variables, this expression contains only the field and its first derivatives. It is simpler than the generalized Landau-Lifshitz tensor but both yield the same total quantities since they differ by the divergence of a superpotential. We also discuss the role of the gauge conditions in the proofs of the uniqueness. In the Appendix, the symbolic tensor manipulation software cadabra is briefly described. It is very effective in obtaining various results which would otherwise require lengthy calculations.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review D

  • ISSN

    1550-7998

  • e-ISSN

  • Svazek periodika

    93

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    1-14

  • Kód UT WoS článku

    000367675100006

  • EID výsledku v databázi Scopus

    2-s2.0-84955443745