Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Persistence of unvisited sites in quantum walks on a line

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00300540" target="_blank" >RIV/68407700:21340/16:00300540 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.032321" target="_blank" >http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.032321</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevA.93.032321" target="_blank" >10.1103/PhysRevA.93.032321</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Persistence of unvisited sites in quantum walks on a line

  • Popis výsledku v původním jazyce

    We analyze the asymptotic scaling of persistence of unvisited sites for quantum walks on a line. In contrast to the classical random walk, there is no connection between the behavior of persistence and the scaling of variance. In particular, we find that for a two-state quantum walk persistence follows an inverse power law where the exponent is determined solely by the coin parameter. Moreover, for a one-parameter family of three-state quantum walks containing the Grover walk, the scaling of persistence is given by two contributions. The first is the inverse power law. The second contribution to the asymptotic behavior of persistence is an exponential decay coming from the trapping nature of the studied family of quantum walks. In contrast to the two-state walks, both the exponent of the inverse power-law and the decay constant of the exponential decay depend also on the initial coin state and its coherence. Hence, one can achieve various regimes of persistence by altering the initial condition, ranging from purely exponential decay to purely inverse power-law behavior.

  • Název v anglickém jazyce

    Persistence of unvisited sites in quantum walks on a line

  • Popis výsledku anglicky

    We analyze the asymptotic scaling of persistence of unvisited sites for quantum walks on a line. In contrast to the classical random walk, there is no connection between the behavior of persistence and the scaling of variance. In particular, we find that for a two-state quantum walk persistence follows an inverse power law where the exponent is determined solely by the coin parameter. Moreover, for a one-parameter family of three-state quantum walks containing the Grover walk, the scaling of persistence is given by two contributions. The first is the inverse power law. The second contribution to the asymptotic behavior of persistence is an exponential decay coming from the trapping nature of the studied family of quantum walks. In contrast to the two-state walks, both the exponent of the inverse power-law and the decay constant of the exponential decay depend also on the initial coin state and its coherence. Hence, one can achieve various regimes of persistence by altering the initial condition, ranging from purely exponential decay to purely inverse power-law behavior.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PHYSICAL REVIEW A

  • ISSN

    2469-9926

  • e-ISSN

  • Svazek periodika

    93

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    "032321-1"-"032321-10"

  • Kód UT WoS článku

    000372398800004

  • EID výsledku v databázi Scopus

    2-s2.0-84961785376