Combined swept region and intersection-based single-material remapping method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00310245" target="_blank" >RIV/68407700:21340/17:00310245 - isvavai.cz</a>
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/doi/10.1002/fld.4384/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/fld.4384/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/fld.4384" target="_blank" >10.1002/fld.4384</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combined swept region and intersection-based single-material remapping method
Popis výsledku v původním jazyce
A typical Arbitrary Lagrangian-Eulerian (ALE) algorithm consists of a Lagrangian step, where the computational mesh moves with the fluid flow, a rezoning step, where the computational mesh is smoothed and repaired in case it gets too distorted, and a remapping step, where all fluid quantities are conservatively interpolated on this new mesh. In single-material simulations, the remapping process can be represented in a flux form, with fluxes approximated by integrating a reconstructed function over intersections of neighboring computational cells on the original and rezoned computational mesh. This algorithm is complex and computationally demanding -- therefore a simpler approach, which utilizes regions swept by the cell edges during rezoning, is often used in practice. However, it has been observed that such simplification can lead to distortion of the solution symmetry, especially when the mesh movement is not bound by such symmetry. For this reason, we propose an algorithm combining both approaches in a similar way that was proposed for multi-material remapping (two-step hybrid remap). Intersections and exact integration are employed only in certain parts of the computational mesh, marked by a switching function -- various different criteria are presented in this paper. The swept-based method is used elsewhere in areas that are not marked. This way our algorithm can retain the beneficial symmetry-preserving capabilities of intersection-based remapping while keeping the overall computational cost moderate.
Název v anglickém jazyce
Combined swept region and intersection-based single-material remapping method
Popis výsledku anglicky
A typical Arbitrary Lagrangian-Eulerian (ALE) algorithm consists of a Lagrangian step, where the computational mesh moves with the fluid flow, a rezoning step, where the computational mesh is smoothed and repaired in case it gets too distorted, and a remapping step, where all fluid quantities are conservatively interpolated on this new mesh. In single-material simulations, the remapping process can be represented in a flux form, with fluxes approximated by integrating a reconstructed function over intersections of neighboring computational cells on the original and rezoned computational mesh. This algorithm is complex and computationally demanding -- therefore a simpler approach, which utilizes regions swept by the cell edges during rezoning, is often used in practice. However, it has been observed that such simplification can lead to distortion of the solution symmetry, especially when the mesh movement is not bound by such symmetry. For this reason, we propose an algorithm combining both approaches in a similar way that was proposed for multi-material remapping (two-step hybrid remap). Intersections and exact integration are employed only in certain parts of the computational mesh, marked by a switching function -- various different criteria are presented in this paper. The swept-based method is used elsewhere in areas that are not marked. This way our algorithm can retain the beneficial symmetry-preserving capabilities of intersection-based remapping while keeping the overall computational cost moderate.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-21318S" target="_blank" >GA14-21318S: Lagrangeovské a ALE metody pro mechaniku stlačitelných tekutin a elasto-plastických pevných látek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Fluids
ISSN
0271-2091
e-ISSN
1097-0363
Svazek periodika
85
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
363-382
Kód UT WoS článku
000410707900002
EID výsledku v databázi Scopus
2-s2.0-85019044851