History dependence and the continuum approximation breakdown: the impact of domain growth on Turing's instability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00313195" target="_blank" >RIV/68407700:21340/17:00313195 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1098/rspa.2016.0744" target="_blank" >http://dx.doi.org/10.1098/rspa.2016.0744</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1098/rspa.2016.0744" target="_blank" >10.1098/rspa.2016.0744</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
History dependence and the continuum approximation breakdown: the impact of domain growth on Turing's instability
Popis výsledku v původním jazyce
A diffusively driven instability has been hypothesized as a mechanism to drive spatial self-organization in biological systems since the seminal work of Turing. Such systems are often considered on a growing domain, but traditional theoretical studies have only treated the domain size as a bifurcation parameter, neglecting the system non-autonomy. More recently, the conditions for a diffusively driven instability on a growing domain have been determined under stringent conditions, including slow growth, a restriction on the temporal interval over which the prospect of an instability can be considered and a neglect of the impact that time evolution has on the stability properties of the homogeneous reference state from which heterogeneity emerges. Here, we firstly relax this latter assumption and observe that the conditions for the Turing instability are much more complex and depend on the history of the system in general. We proceed to relax all the above constraints, making analytical progress by focusing on specific examples. With faster growth, instabilities can grow transiently and decay, making the prediction of a prospective Turing instability much more difficult. In addition, arbitrarily high spatial frequencies can destabilize, in which case the continuum approximation is predicted to break down.
Název v anglickém jazyce
History dependence and the continuum approximation breakdown: the impact of domain growth on Turing's instability
Popis výsledku anglicky
A diffusively driven instability has been hypothesized as a mechanism to drive spatial self-organization in biological systems since the seminal work of Turing. Such systems are often considered on a growing domain, but traditional theoretical studies have only treated the domain size as a bifurcation parameter, neglecting the system non-autonomy. More recently, the conditions for a diffusively driven instability on a growing domain have been determined under stringent conditions, including slow growth, a restriction on the temporal interval over which the prospect of an instability can be considered and a neglect of the impact that time evolution has on the stability properties of the homogeneous reference state from which heterogeneity emerges. Here, we firstly relax this latter assumption and observe that the conditions for the Turing instability are much more complex and depend on the history of the system in general. We proceed to relax all the above constraints, making analytical progress by focusing on specific examples. With faster growth, instabilities can grow transiently and decay, making the prediction of a prospective Turing instability much more difficult. In addition, arbitrarily high spatial frequencies can destabilize, in which case the continuum approximation is predicted to break down.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
ISSN
1364-5021
e-ISSN
1471-2946
Svazek periodika
473
Číslo periodika v rámci svazku
2199
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000408469400012
EID výsledku v databázi Scopus
2-s2.0-85017592104