Comparison of Bayesian & other approaches to the estimation of fatigue crack growth rate from 2D textural features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00316541" target="_blank" >RIV/68407700:21340/17:00316541 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.15632/jtam-pl.55.4.1269" target="_blank" >http://dx.doi.org/10.15632/jtam-pl.55.4.1269</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15632/jtam-pl.55.4.1269" target="_blank" >10.15632/jtam-pl.55.4.1269</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Bayesian & other approaches to the estimation of fatigue crack growth rate from 2D textural features
Popis výsledku v původním jazyce
The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Non- linear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time.
Název v anglickém jazyce
Comparison of Bayesian & other approaches to the estimation of fatigue crack growth rate from 2D textural features
Popis výsledku anglicky
The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Non- linear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Theoretical and Applied Mechanics
ISSN
1429-2955
e-ISSN
—
Svazek periodika
55
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
10
Strana od-do
1269-1278
Kód UT WoS článku
000413603400013
EID výsledku v databázi Scopus
2-s2.0-85032174303