Multidimensional Alpha Stable Distribution in Model Parameter Estimation Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00316546" target="_blank" >RIV/68407700:21340/17:00316546 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multidimensional Alpha Stable Distribution in Model Parameter Estimation Algorithms
Popis výsledku v původním jazyce
Solving optimization problem with a multidimensional objective function is the tra- ditional task of operational research. Both multimodality and nonsmoothness of the objective function are typical difficulties when searching for the global optimum. To improve the search effectiveness in non-adaptive algorithms as well as the ability to leap away from local optima, the so called Levy flights are often used. The Levy flights are random non-Gaussian step sizes following alpha stable distribution. How- ever, this random variable is very difficult to be generated in the multivariatal case, the step size generation procedure has never been treated accordingly so far. To examine the effectiveness of the general usage of this possibility, the goal of this paper is to introduce the multivariate alpha stable random variable step size generation technique into several novel optimization algorithms. Our approach then is used to estimate pa- rameters of generalized hyperbolic distribution with the use of maximum likelihood estimation method for returns of Czech stock market index PX from 2000 to 2017. As this task is almost unsolvable for traditional optimization methods, the results we obtained are quite promising.
Název v anglickém jazyce
Multidimensional Alpha Stable Distribution in Model Parameter Estimation Algorithms
Popis výsledku anglicky
Solving optimization problem with a multidimensional objective function is the tra- ditional task of operational research. Both multimodality and nonsmoothness of the objective function are typical difficulties when searching for the global optimum. To improve the search effectiveness in non-adaptive algorithms as well as the ability to leap away from local optima, the so called Levy flights are often used. The Levy flights are random non-Gaussian step sizes following alpha stable distribution. How- ever, this random variable is very difficult to be generated in the multivariatal case, the step size generation procedure has never been treated accordingly so far. To examine the effectiveness of the general usage of this possibility, the goal of this paper is to introduce the multivariate alpha stable random variable step size generation technique into several novel optimization algorithms. Our approach then is used to estimate pa- rameters of generalized hyperbolic distribution with the use of maximum likelihood estimation method for returns of Czech stock market index PX from 2000 to 2017. As this task is almost unsolvable for traditional optimization methods, the results we obtained are quite promising.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics MME 2017
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
384-389
Název nakladatele
Univerzita Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—