Kohonen SOM Learning Strategy and Country Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00316574" target="_blank" >RIV/68407700:21340/17:00316574 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kohonen SOM Learning Strategy and Country Classification
Popis výsledku v původním jazyce
The Self-Organized Mapping (SOM) represents a traditional tool for multidimen- sional data analysis overperforming analytical power of cluster analysis. But there are possible difficulties when the SOM is applied to data patterns of large size. We present testing example using iris dataset. Our approach is mainly used for macro-economical data analysis which is based on logarithmic differences, pattern dimensionality reduction and finalization of data analysis using Kohonen SOM learning. General methodology was applied to main economic indicators describing the situation of thirty five countries during more than twenty years. The used dataset comes from regularly published statistics of European Commission. The main aim is to identify the similarities of countries. The role of SOM topology, learning strategy and reduced pattern size can be also used to predict behaviour during crisis based on the identified similarity and known.
Název v anglickém jazyce
Kohonen SOM Learning Strategy and Country Classification
Popis výsledku anglicky
The Self-Organized Mapping (SOM) represents a traditional tool for multidimen- sional data analysis overperforming analytical power of cluster analysis. But there are possible difficulties when the SOM is applied to data patterns of large size. We present testing example using iris dataset. Our approach is mainly used for macro-economical data analysis which is based on logarithmic differences, pattern dimensionality reduction and finalization of data analysis using Kohonen SOM learning. General methodology was applied to main economic indicators describing the situation of thirty five countries during more than twenty years. The used dataset comes from regularly published statistics of European Commission. The main aim is to identify the similarities of countries. The role of SOM topology, learning strategy and reduced pattern size can be also used to predict behaviour during crisis based on the identified similarity and known.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů