A Multi-Scale Residual-Based Anti-Hourglass Control for Compatible Staggered Lagrangian Hydrodynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00313495" target="_blank" >RIV/68407700:21340/18:00313495 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0021999117308173" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0021999117308173</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcp.2017.10.050" target="_blank" >10.1016/j.jcp.2017.10.050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Multi-Scale Residual-Based Anti-Hourglass Control for Compatible Staggered Lagrangian Hydrodynamics
Popis výsledku v původním jazyce
Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this paper, we describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.
Název v anglickém jazyce
A Multi-Scale Residual-Based Anti-Hourglass Control for Compatible Staggered Lagrangian Hydrodynamics
Popis výsledku anglicky
Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this paper, we describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-21318S" target="_blank" >GA14-21318S: Lagrangeovské a ALE metody pro mechaniku stlačitelných tekutin a elasto-plastických pevných látek</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Physics
ISSN
0021-9991
e-ISSN
1090-2716
Svazek periodika
354
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
000418536900001
EID výsledku v databázi Scopus
2-s2.0-85033394301