Mathematical Model of Freezing in a Porous Medium at Micro-Scale
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00319345" target="_blank" >RIV/68407700:21340/18:00319345 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4208/cicp.OA-2017-0082" target="_blank" >https://doi.org/10.4208/cicp.OA-2017-0082</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4208/cicp.OA-2017-0082" target="_blank" >10.4208/cicp.OA-2017-0082</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mathematical Model of Freezing in a Porous Medium at Micro-Scale
Popis výsledku v původním jazyce
We present a micro-scale model describing the dynamics of pore water phase transition and associated mechanical effects within water-saturated soil subjected to freezing conditions. Since mechanical manifestations in areas subjected to either sea- sonal soil freezing and thawing or climate change induced thawing of permanently frozen land may have severe impacts on infrastructures present, further research on this topic is timely and warranted. We believe that analysis of ice formation, which incorporates the multiphysics of the phase and structure changes at the micro-scale, is needed. For better understanding the process of soil freezing and thawing at the field-scale, consequent upscaling may help improve our understanding of the phenomenon at the macro-scale. In an effort to investigate the effect of the pore water density change during the prop- agation of the phase transition front within cooled soil material, we have designed a 2D continuum micro-scale model which describes the solid phase in terms of a heat and momentum balance and the fluid phase in terms of a modified heat equation that accounts for the phase transition of the pore water and a momentum conservation equation for Newtonian fluid. This model provides the information on force acting on a single soil grain induced by the gradual phase transition of the surrounding medium within a nontrivial (i.e. curved) pore geometry. Solutions obtained by this model show expected thermal evolution but indicate a non-trivial structural behavior.
Název v anglickém jazyce
Mathematical Model of Freezing in a Porous Medium at Micro-Scale
Popis výsledku anglicky
We present a micro-scale model describing the dynamics of pore water phase transition and associated mechanical effects within water-saturated soil subjected to freezing conditions. Since mechanical manifestations in areas subjected to either sea- sonal soil freezing and thawing or climate change induced thawing of permanently frozen land may have severe impacts on infrastructures present, further research on this topic is timely and warranted. We believe that analysis of ice formation, which incorporates the multiphysics of the phase and structure changes at the micro-scale, is needed. For better understanding the process of soil freezing and thawing at the field-scale, consequent upscaling may help improve our understanding of the phenomenon at the macro-scale. In an effort to investigate the effect of the pore water density change during the prop- agation of the phase transition front within cooled soil material, we have designed a 2D continuum micro-scale model which describes the solid phase in terms of a heat and momentum balance and the fluid phase in terms of a modified heat equation that accounts for the phase transition of the pore water and a momentum conservation equation for Newtonian fluid. This model provides the information on force acting on a single soil grain induced by the gradual phase transition of the surrounding medium within a nontrivial (i.e. curved) pore geometry. Solutions obtained by this model show expected thermal evolution but indicate a non-trivial structural behavior.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Computational Physics
ISSN
1815-2406
e-ISSN
1991-7120
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
19
Strana od-do
557-575
Kód UT WoS článku
000455954900011
EID výsledku v databázi Scopus
2-s2.0-85058968376