Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Existence analysis of a single-phase flow mixture with van der Waals pressure

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00319358" target="_blank" >RIV/68407700:21340/18:00319358 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1137/16M1107024" target="_blank" >http://dx.doi.org/10.1137/16M1107024</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/16M1107024" target="_blank" >10.1137/16M1107024</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Existence analysis of a single-phase flow mixture with van der Waals pressure

  • Popis výsledku v původním jazyce

    The transport of single-phase fluid mixtures in porous media is described by cross- diffusion equations for the mass densities. The equations are obtained in a thermodynamic consistent way from mass balance, Darcy’s law, and the van der Waals equation of state for mixtures. The model consists of parabolic equations with cross diffusion with a hypocoercive diffusion operator. The global-in-time existence of weak solutions in a bounded domain with equilibrium boundary conditions is proved, extending the boundedness-by-entropy method. Based on the free energy inequality, the large-time convergence of the solution to the constant equilibrium mass density is shown. For the two-species model and specific diffusion matrices, an integral inequality is proved, which reveals a minimum principle for the mass fractions. Without mass diffusion, the two-dimensional pressure is shown to converge exponentially fast to a constant. Numerical examples in one space dimension illustrate this convergence.

  • Název v anglickém jazyce

    Existence analysis of a single-phase flow mixture with van der Waals pressure

  • Popis výsledku anglicky

    The transport of single-phase fluid mixtures in porous media is described by cross- diffusion equations for the mass densities. The equations are obtained in a thermodynamic consistent way from mass balance, Darcy’s law, and the van der Waals equation of state for mixtures. The model consists of parabolic equations with cross diffusion with a hypocoercive diffusion operator. The global-in-time existence of weak solutions in a bounded domain with equilibrium boundary conditions is proved, extending the boundedness-by-entropy method. Based on the free energy inequality, the large-time convergence of the solution to the constant equilibrium mass density is shown. For the two-species model and specific diffusion matrices, an integral inequality is proved, which reveals a minimum principle for the mass fractions. Without mass diffusion, the two-dimensional pressure is shown to converge exponentially fast to a constant. Numerical examples in one space dimension illustrate this convergence.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Mathematical Analysis

  • ISSN

    0036-1410

  • e-ISSN

    1095-7154

  • Svazek periodika

    50

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    1367-1395

  • Kód UT WoS článku

    000426630900043

  • EID výsledku v databázi Scopus

    2-s2.0-85043526119