On Clifford Groups in Quantum Computing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00324445" target="_blank" >RIV/68407700:21340/18:00324445 - isvavai.cz</a>
Výsledek na webu
<a href="http://iopscience.iop.org/issue/1742-6596/1071/1" target="_blank" >http://iopscience.iop.org/issue/1742-6596/1071/1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/1071/1/012022" target="_blank" >10.1088/1742-6596/1071/1/012022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Clifford Groups in Quantum Computing
Popis výsledku v původním jazyce
The term Clifford group was introduced in 1998 by D. Gottesmann in his investigation of quantum error-correcting codes. The simplest Clifford group in multiqubit quantum computation is generated by a restricted set of unitary Clifford gates - the Hadamard, $pi/4$-phase and controlled-X gates. Because of this restriction the Clifford model of quantum computation can be efficiently simulated on a classical computer (the Gottesmann-Knill theorem). However, this fact does not diminish the importance of the Clifford model, since it may serve as a suitable starting point for a full-fledged quantum computation. In the general case of a single or composite quantum system with finite-dimensional Hilbert space the finite Weyl-Heisenberg group of unitary operators defines the quantum kinematics and the states of the quantum register. Then the corresponding Clifford group is defined as the group of unitary operators leaving the Weyl-Heisenberg group invariant. The aim of this contribution is to show that our comprehensive results on symmetries of the Pauli gradings of quantum operator algebras -- covering any single as well as composite finite quantum systems -- directly correspond to Clifford groups defined as quotients with respect to U(1).
Název v anglickém jazyce
On Clifford Groups in Quantum Computing
Popis výsledku anglicky
The term Clifford group was introduced in 1998 by D. Gottesmann in his investigation of quantum error-correcting codes. The simplest Clifford group in multiqubit quantum computation is generated by a restricted set of unitary Clifford gates - the Hadamard, $pi/4$-phase and controlled-X gates. Because of this restriction the Clifford model of quantum computation can be efficiently simulated on a classical computer (the Gottesmann-Knill theorem). However, this fact does not diminish the importance of the Clifford model, since it may serve as a suitable starting point for a full-fledged quantum computation. In the general case of a single or composite quantum system with finite-dimensional Hilbert space the finite Weyl-Heisenberg group of unitary operators defines the quantum kinematics and the states of the quantum register. Then the corresponding Clifford group is defined as the group of unitary operators leaving the Weyl-Heisenberg group invariant. The aim of this contribution is to show that our comprehensive results on symmetries of the Pauli gradings of quantum operator algebras -- covering any single as well as composite finite quantum systems -- directly correspond to Clifford groups defined as quotients with respect to U(1).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics: Conference Series
ISBN
—
ISSN
1742-6596
e-ISSN
1742-6596
Počet stran výsledku
11
Strana od-do
1-11
Název nakladatele
Institute of Physics Publishing
Místo vydání
Bristol
Místo konání akce
Bregenz
Datum konání akce
30. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—