Quantum Markov processes: From attractor structure to explicit forms of asymptotic states
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00325008" target="_blank" >RIV/68407700:21340/18:00325008 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1140%2Fepjp%2Fi2018-12109-8" target="_blank" >https://link.springer.com/article/10.1140%2Fepjp%2Fi2018-12109-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjp/i2018-12109-8" target="_blank" >10.1140/epjp/i2018-12109-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantum Markov processes: From attractor structure to explicit forms of asymptotic states
Popis výsledku v původním jazyce
Markov processes play an important role in physics and in particular in the theory of open systems. In this paper we study the asymptotic evolution of trace-nonincreasing homogeneous quantum Markov processes (both types, discrete quantum Markov chains and continuous quantum Markov dynamical semigroups) equipped with a subinvariant faithful state in the Schrödinger and the Heisenberg picture. We derive a fundamental theorem specifying the structure of the asymptotics and uncover a rich set of transformations between attractors of quantum Markov processes in both pictures. Moreover, we generalize the structure theorem derived earlier for quantum Markov chains to quantum Markov dynamical semigroups showing how the internal structure of generators of quantum Markov processes determines attractors in both pictures. Based on these results we provide two characterizations of all asymptotic and stationary states, both strongly reminding in form the well-known Gibbs states of statistical mechanics. We prove that the dynamics within the asymptotic space is of unitary type, i.e. quantum Markov processes preserve a certain scalar product of operators from the asymptotic space, but there is no corresponding unitary evolution on the original Hilbert space of pure states. Finally simple examples illustrating the derived theory are given.
Název v anglickém jazyce
Quantum Markov processes: From attractor structure to explicit forms of asymptotic states
Popis výsledku anglicky
Markov processes play an important role in physics and in particular in the theory of open systems. In this paper we study the asymptotic evolution of trace-nonincreasing homogeneous quantum Markov processes (both types, discrete quantum Markov chains and continuous quantum Markov dynamical semigroups) equipped with a subinvariant faithful state in the Schrödinger and the Heisenberg picture. We derive a fundamental theorem specifying the structure of the asymptotics and uncover a rich set of transformations between attractors of quantum Markov processes in both pictures. Moreover, we generalize the structure theorem derived earlier for quantum Markov chains to quantum Markov dynamical semigroups showing how the internal structure of generators of quantum Markov processes determines attractors in both pictures. Based on these results we provide two characterizations of all asymptotic and stationary states, both strongly reminding in form the well-known Gibbs states of statistical mechanics. We prove that the dynamics within the asymptotic space is of unitary type, i.e. quantum Markov processes preserve a certain scalar product of operators from the asymptotic space, but there is no corresponding unitary evolution on the original Hilbert space of pure states. Finally simple examples illustrating the derived theory are given.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-09824S" target="_blank" >GA16-09824S: Formování rovnovážných stavů v kvantových sítích</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EUROPEAN PHYSICAL JOURNAL PLUS
ISSN
2190-5444
e-ISSN
—
Svazek periodika
133
Číslo periodika v rámci svazku
310
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000440760100002
EID výsledku v databázi Scopus
2-s2.0-85052108746