Uranyl – Carbonate – Ca(2+)/Mg(2+) aqueous system spectroscopic experimental and theoretical study - Molecular modelling meets environmental protection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00326457" target="_blank" >RIV/68407700:21340/18:00326457 - isvavai.cz</a>
Výsledek na webu
<a href="https://indico.fjfi.cvut.cz/event/82/attachments/701/913/Booklet_of_Abstracts_CCSSS_162_2018_49_268.pdf" target="_blank" >https://indico.fjfi.cvut.cz/event/82/attachments/701/913/Booklet_of_Abstracts_CCSSS_162_2018_49_268.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Uranyl – Carbonate – Ca(2+)/Mg(2+) aqueous system spectroscopic experimental and theoretical study - Molecular modelling meets environmental protection
Popis výsledku v původním jazyce
Determining uranium speciation is important for environmental monitoring or within experimental studies for possible remediation protocols (and possible application for prospection and extraction is of interest as well). Natural water samples dominated by system UO22+ - CO2-3 - Ca2+/Mg2+ - H2O have been chosen in this study. Cryogenic Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS) and in-Capillary UV-VIS spectrophotometry have been used for direct speciation in low concentration ranges (10-8 M – 10-3 M, 10-6 M – 10-2 M). However, subsequent spectral series data analysis face two major problems – 1. Even robust Multilinear methods suffer from ill-conditioned spectral data (as individual components are nearly indistinguishable in both spectral and temporal domains). 2. Data analysis provides us with a set of individual component spectra and concentration profiles. But how to assign components to a particular chemical species? In particular, when independent information on the chemical composition of the studied natural sample is limited - individual component assignment from, often incomplete, literature data could be insufficient. We propose first-principles-based Computational Chemistry protocol to tackle both problems. Aside to the spin-orbit splitting including quasi-relativistic and relativistic spectral parameter estimation extending the preliminary study 1, a protocol connecting Classical Molecular Dynamics sampling, ground and excited state geometry optimization, normal mode computation and multimode Franck-Condon Factor computation has been proposed for individual components spectra computer simulation. The preliminary versions of protocol were applied to aquo complex [UO2(H2O)5]2+ [2],[3] and tris(sulfate) complex, [UO2(SO4)3]4-. [1] Višňák J. et al DOI: 10.1051/epjconf/201715401029. [2] Višňák J., Sobek L., MetaCentrum 2017 Annual Report (to be published). [3] https://arxiv.org/ftp/arxiv/papers/1811/1811.10456.pdf
Název v anglickém jazyce
Uranyl – Carbonate – Ca(2+)/Mg(2+) aqueous system spectroscopic experimental and theoretical study - Molecular modelling meets environmental protection
Popis výsledku anglicky
Determining uranium speciation is important for environmental monitoring or within experimental studies for possible remediation protocols (and possible application for prospection and extraction is of interest as well). Natural water samples dominated by system UO22+ - CO2-3 - Ca2+/Mg2+ - H2O have been chosen in this study. Cryogenic Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS) and in-Capillary UV-VIS spectrophotometry have been used for direct speciation in low concentration ranges (10-8 M – 10-3 M, 10-6 M – 10-2 M). However, subsequent spectral series data analysis face two major problems – 1. Even robust Multilinear methods suffer from ill-conditioned spectral data (as individual components are nearly indistinguishable in both spectral and temporal domains). 2. Data analysis provides us with a set of individual component spectra and concentration profiles. But how to assign components to a particular chemical species? In particular, when independent information on the chemical composition of the studied natural sample is limited - individual component assignment from, often incomplete, literature data could be insufficient. We propose first-principles-based Computational Chemistry protocol to tackle both problems. Aside to the spin-orbit splitting including quasi-relativistic and relativistic spectral parameter estimation extending the preliminary study 1, a protocol connecting Classical Molecular Dynamics sampling, ground and excited state geometry optimization, normal mode computation and multimode Franck-Condon Factor computation has been proposed for individual components spectra computer simulation. The preliminary versions of protocol were applied to aquo complex [UO2(H2O)5]2+ [2],[3] and tris(sulfate) complex, [UO2(SO4)3]4-. [1] Višňák J. et al DOI: 10.1051/epjconf/201715401029. [2] Višňák J., Sobek L., MetaCentrum 2017 Annual Report (to be published). [3] https://arxiv.org/ftp/arxiv/papers/1811/1811.10456.pdf
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů