Contouring Geodetically Accurate Acoustic Emission Sources via Kernel Density Estimates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00326201" target="_blank" >RIV/68407700:21340/19:00326201 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ndt.net/?id=23596" target="_blank" >https://www.ndt.net/?id=23596</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contouring Geodetically Accurate Acoustic Emission Sources via Kernel Density Estimates
Popis výsledku v původním jazyce
We deal with numerical model of localization of acoustic emission (AE) sources on real complex solid bodies. Our approach is based on exact geodesic curves on 3D vessels composed of several parametrized surfaces. The numerical computations are provided via Finite difference, Newton–Raphson, and Fixed-point iteration methods applied to geodesic equations acquired from differential geometry theory. To speed up computations, some technical improvements and optimizations are proposed. The variable propagation velocity and also the case when the geodesic curve has to bypass a given obstacle there is also included into the model. These techniques are employed in the real experimental setup on bodies with higher geometrical complexity. The results (localization maps) of AE localization principle using length (ΔL) or time (ΔT) differences, obtained by means of geodesics, are then processed through the two-dimensional Kernel probability density estimates executed directly on the 3-D surfaces, which give us the most probable areas of the AE source positions on the main body. The placement of piezo-ceramic AE sensors is outside the central part of the vessel because it can be inaccessible due to possible high temperature or radioactivity, such as in the case of nuclear power station health monitoring. This outward position of all AE sensors can result in a dispersed AE wave detected, or attenuated because of welded intersections of different surfaces. Thus, the Change-point analysis of AE signals is also discussed in order to obtain the most precise arrival times of AE events, which is crucial for ΔT / ΔL localization.
Název v anglickém jazyce
Contouring Geodetically Accurate Acoustic Emission Sources via Kernel Density Estimates
Popis výsledku anglicky
We deal with numerical model of localization of acoustic emission (AE) sources on real complex solid bodies. Our approach is based on exact geodesic curves on 3D vessels composed of several parametrized surfaces. The numerical computations are provided via Finite difference, Newton–Raphson, and Fixed-point iteration methods applied to geodesic equations acquired from differential geometry theory. To speed up computations, some technical improvements and optimizations are proposed. The variable propagation velocity and also the case when the geodesic curve has to bypass a given obstacle there is also included into the model. These techniques are employed in the real experimental setup on bodies with higher geometrical complexity. The results (localization maps) of AE localization principle using length (ΔL) or time (ΔT) differences, obtained by means of geodesics, are then processed through the two-dimensional Kernel probability density estimates executed directly on the 3-D surfaces, which give us the most probable areas of the AE source positions on the main body. The placement of piezo-ceramic AE sensors is outside the central part of the vessel because it can be inaccessible due to possible high temperature or radioactivity, such as in the case of nuclear power station health monitoring. This outward position of all AE sensors can result in a dispersed AE wave detected, or attenuated because of welded intersections of different surfaces. Thus, the Change-point analysis of AE signals is also discussed in order to obtain the most precise arrival times of AE events, which is crucial for ΔT / ΔL localization.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20306 - Audio engineering, reliability analysis
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015068" target="_blank" >LM2015068: Výzkumná infrastruktura pro experimenty ve Fermilab</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
e-Journal of NDT
ISSN
1435-4934
e-ISSN
1435-4934
Svazek periodika
—
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—