Construction of algorithms for parallel addition in expanding bases via Extending Window Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00326521" target="_blank" >RIV/68407700:21340/19:00326521 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.tcs.2019.08.010" target="_blank" >https://doi.org/10.1016/j.tcs.2019.08.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2019.08.010" target="_blank" >10.1016/j.tcs.2019.08.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Construction of algorithms for parallel addition in expanding bases via Extending Window Method
Popis výsledku v původním jazyce
An algebraic number βelementC without conjugates of modulus 1 can serve as the base of a numeration system (β,A) allowing parallel addition, i.e., the sum of two operands represented in β with digits from A is calculated in constant time, irrespective of the length of the operands. To allow parallel addition, sufficient redundancy must exist in the alphabet A. The complexity of parallel addition algorithms depends heavily on the alphabet size: smaller alphabet implies higher complexity of the algorithm. We search for parallel addition algorithms on alphabets of the minimum possible size for a given base. To handle high complexity of these algorithms, we introduce a so-called Extending Window Method (EWM) – an algorithm constructing parallel addition algorithms. It can be applied on bases being expanding algebraic integers, with all conjugates > 1 in modulus. The convergence of the EWM is not guaranteed. Nevertheless, we developed tools for revealing non-convergence, and found some successful applications. The EWM provides equal parallel addition algorithms as introduced earlier by A. Avizienis, C.Y. Chow & J.E. Robertson or B. Parhami for integer bases and alphabets. Applying the EWM on complexbases β with non-integer alphabets AcZ[β] delivers new results, not found previously.
Název v anglickém jazyce
Construction of algorithms for parallel addition in expanding bases via Extending Window Method
Popis výsledku anglicky
An algebraic number βelementC without conjugates of modulus 1 can serve as the base of a numeration system (β,A) allowing parallel addition, i.e., the sum of two operands represented in β with digits from A is calculated in constant time, irrespective of the length of the operands. To allow parallel addition, sufficient redundancy must exist in the alphabet A. The complexity of parallel addition algorithms depends heavily on the alphabet size: smaller alphabet implies higher complexity of the algorithm. We search for parallel addition algorithms on alphabets of the minimum possible size for a given base. To handle high complexity of these algorithms, we introduce a so-called Extending Window Method (EWM) – an algorithm constructing parallel addition algorithms. It can be applied on bases being expanding algebraic integers, with all conjugates > 1 in modulus. The convergence of the EWM is not guaranteed. Nevertheless, we developed tools for revealing non-convergence, and found some successful applications. The EWM provides equal parallel addition algorithms as introduced earlier by A. Avizienis, C.Y. Chow & J.E. Robertson or B. Parhami for integer bases and alphabets. Applying the EWM on complexbases β with non-integer alphabets AcZ[β] delivers new results, not found previously.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
1879-2294
Svazek periodika
795
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
547-569
Kód UT WoS článku
000494887800042
EID výsledku v databázi Scopus
2-s2.0-85071323326