Heart attack mortality prediction: an application of machine learning methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00332898" target="_blank" >RIV/68407700:21340/19:00332898 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3906/elk-1811-4" target="_blank" >https://doi.org/10.3906/elk-1811-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3906/elk-1811-4" target="_blank" >10.3906/elk-1811-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heart attack mortality prediction: an application of machine learning methods
Popis výsledku v původním jazyce
The heart is an important organ in the human body, and Acute Myocardial Infarction (AMI) is the leading 5 cause of death in most countries. Researchers are diverting a lot of data analysis work to assist doctors in predicting 6 the heart problem. An analysis of the data related to dierent health problems and its functions can help in predicting 7 with a degree of certainty the wellness of this organ. Our research reported in this paper is twofold. In the rst part 8 of the paper, we compare dierent predictive models of hospital mortality for patients with AMI. All results presented 9 in this part are based on real data of about 603 patients from a hospital in Czechia and about 184 patients from two 10 hospitals in Syria. Although the learned models may be specic to the data, we also draw more general conclusions 11 that we believe are generally valid. In the second part of the paper, because the data is incomplete and imbalanced 12 we develop the Chow-Liu and tree-augmented naive Bayesian (TAN) to deal with that data in better conditions, and 13 measure the quality of these algorithms with other algorithms.
Název v anglickém jazyce
Heart attack mortality prediction: an application of machine learning methods
Popis výsledku anglicky
The heart is an important organ in the human body, and Acute Myocardial Infarction (AMI) is the leading 5 cause of death in most countries. Researchers are diverting a lot of data analysis work to assist doctors in predicting 6 the heart problem. An analysis of the data related to dierent health problems and its functions can help in predicting 7 with a degree of certainty the wellness of this organ. Our research reported in this paper is twofold. In the rst part 8 of the paper, we compare dierent predictive models of hospital mortality for patients with AMI. All results presented 9 in this part are based on real data of about 603 patients from a hospital in Czechia and about 184 patients from two 10 hospitals in Syria. Although the learned models may be specic to the data, we also draw more general conclusions 11 that we believe are generally valid. In the second part of the paper, because the data is incomplete and imbalanced 12 we develop the Chow-Liu and tree-augmented naive Bayesian (TAN) to deal with that data in better conditions, and 13 measure the quality of these algorithms with other algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Turkish Journal of Electrical Engineering & Computer Sciences
ISSN
1300-0632
e-ISSN
1303-6203
Svazek periodika
27
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
TR - Turecká republika
Počet stran výsledku
12
Strana od-do
4378-4389
Kód UT WoS článku
000506165400025
EID výsledku v databázi Scopus
2-s2.0-85076636366