Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

History and Future of Temperature Reactivity Experiments at VR-1 reactor

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00337682" target="_blank" >RIV/68407700:21340/19:00337682 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    History and Future of Temperature Reactivity Experiments at VR-1 reactor

  • Popis výsledku v původním jazyce

    Calculation tools for fuel transport criticality safety have to be validated against comprehensive sets of experimental data. One of the aspects is the validation of code ability to predict the reactivity changes with temperature. Unfortunately, in the temperature range of interest for normal operations, i.e. between -40°C and +38°C, there is a shortage of available experimental data. At the VR-1 zero power reactor, as operated by the Czech Technical University in Prague, temperature reactivity experiments were established in 2011. These were originally for the purpose of education and training. Over time, the understanding of experimental conditions and uncertainties in VR-1 has been improved along with associated modeling tools and analytical methods. In 2017, there was an interest in the VR-1 experimental data from the UK, to support the validation of the MONK criticality safety code for temperature-dependent calculations. From this interest, further work has been carried out to support the applicability of the data for such a purpose and to make these data available to the criticality safety community. Also, from subsequent interactions, priorities for future deployment of temperature-reactivity experiments at VR-1 reactor were outlined to reduce the gaps in criticality safety temperature-dependent experimental data. This paper summarizes the history and present status of temperature-reactivity experiments at the VR-1 reactor and related calculation efforts. Finally, the outlook for proposed future experiments is given.

  • Název v anglickém jazyce

    History and Future of Temperature Reactivity Experiments at VR-1 reactor

  • Popis výsledku anglicky

    Calculation tools for fuel transport criticality safety have to be validated against comprehensive sets of experimental data. One of the aspects is the validation of code ability to predict the reactivity changes with temperature. Unfortunately, in the temperature range of interest for normal operations, i.e. between -40°C and +38°C, there is a shortage of available experimental data. At the VR-1 zero power reactor, as operated by the Czech Technical University in Prague, temperature reactivity experiments were established in 2011. These were originally for the purpose of education and training. Over time, the understanding of experimental conditions and uncertainties in VR-1 has been improved along with associated modeling tools and analytical methods. In 2017, there was an interest in the VR-1 experimental data from the UK, to support the validation of the MONK criticality safety code for temperature-dependent calculations. From this interest, further work has been carried out to support the applicability of the data for such a purpose and to make these data available to the criticality safety community. Also, from subsequent interactions, priorities for future deployment of temperature-reactivity experiments at VR-1 reactor were outlined to reduce the gaps in criticality safety temperature-dependent experimental data. This paper summarizes the history and present status of temperature-reactivity experiments at the VR-1 reactor and related calculation efforts. Finally, the outlook for proposed future experiments is given.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20305 - Nuclear related engineering; (nuclear physics to be 1.3);

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů