Cell-centered Lagrangian Lax-Wendroff HLL hybrid scheme in cylindrical geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00342149" target="_blank" >RIV/68407700:21340/20:00342149 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jcp.2020.109605" target="_blank" >https://doi.org/10.1016/j.jcp.2020.109605</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcp.2020.109605" target="_blank" >10.1016/j.jcp.2020.109605</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cell-centered Lagrangian Lax-Wendroff HLL hybrid scheme in cylindrical geometry
Popis výsledku v původním jazyce
Lagrangian hydrodynamics as described by the Euler equations is treated by an improved version of the basic predictor-corrector Lax-Wendroff method that also has added HLL-type dissipative fluxes, including both artificial viscosity and energy dissipation. The method in Cartesian geometry is enhanced by a different weighting of the conservative variables in the predictor and a new treatment of material interfaces. The basic method is extended to cylindrical r, zgeometry, where it satisfies the geometric conservation law and keeps exact spherical symmetry on equiangular polar meshes. The added viscosity does not preserve symmetry, so in order to achieve that we have added a symmetry correction. Numerical hydrodynamic tests, including the Noh, Sedov, spherical Sod, free expansion and Kidder problems show a reasonable performance of the method. In addition, the spherical Noh problem was simulated on an initially rectangular mesh with a very good result regarding its symmetry.
Název v anglickém jazyce
Cell-centered Lagrangian Lax-Wendroff HLL hybrid scheme in cylindrical geometry
Popis výsledku anglicky
Lagrangian hydrodynamics as described by the Euler equations is treated by an improved version of the basic predictor-corrector Lax-Wendroff method that also has added HLL-type dissipative fluxes, including both artificial viscosity and energy dissipation. The method in Cartesian geometry is enhanced by a different weighting of the conservative variables in the predictor and a new treatment of material interfaces. The basic method is extended to cylindrical r, zgeometry, where it satisfies the geometric conservation law and keeps exact spherical symmetry on equiangular polar meshes. The added viscosity does not preserve symmetry, so in order to achieve that we have added a symmetry correction. Numerical hydrodynamic tests, including the Noh, Sedov, spherical Sod, free expansion and Kidder problems show a reasonable performance of the method. In addition, the spherical Noh problem was simulated on an initially rectangular mesh with a very good result regarding its symmetry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Physics
ISSN
0021-9991
e-ISSN
1090-2716
Svazek periodika
417
Číslo periodika v rámci svazku
Sept
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
000552366900023
EID výsledku v databázi Scopus
2-s2.0-85085596169