Turing Patterning in Stratified Domains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00343771" target="_blank" >RIV/68407700:21340/20:00343771 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11538-020-00809-9" target="_blank" >https://doi.org/10.1007/s11538-020-00809-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11538-020-00809-9" target="_blank" >10.1007/s11538-020-00809-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Turing Patterning in Stratified Domains
Popis výsledku v původním jazyce
Reaction-diffusion processes across layered media arise in several scientific domains such as pattern-formingE. colion agar substrates, epidermal-mesenchymal coupling in development, and symmetry-breaking in cell polarization. We develop a modeling framework for bilayer reaction-diffusion systems and relate it to a range of existing models. We derive conditions for diffusion-driven instability of a spatially homogeneous equilibrium analogous to the classical conditions for a Turing instability in the simplest nontrivial setting where one domain has a standard reaction-diffusion system, and the other permits only diffusion. Due to the transverse coupling between these two regions, standard techniques for computing eigenfunctions of the Laplacian cannot be applied, and so we propose an alternative method to compute the dispersion relation directly. We compare instability conditions with full numerical simulations to demonstrate impacts of the geometry and coupling parameters on patterning, and explore various experimentally relevant asymptotic regimes. In the regime where the first domain is suitably thin, we recover a simple modulation of the standard Turing conditions, and find that often the broad impact of the diffusion-only domain is to reduce the ability of the system to form patterns. We also demonstrate complex impacts of this coupling on pattern formation. For instance, we exhibit non-monotonicity of pattern-forming instabilities with respect to geometric and coupling parameters, and highlight an instability from a nontrivial interaction between kinetics in one domain and diffusion in the other. These results are valuable for informing design choices in applications such as synthetic engineering of Turing patterns, but also for understanding the role of stratified media in modulating pattern-forming processes in developmental biology and beyond.
Název v anglickém jazyce
Turing Patterning in Stratified Domains
Popis výsledku anglicky
Reaction-diffusion processes across layered media arise in several scientific domains such as pattern-formingE. colion agar substrates, epidermal-mesenchymal coupling in development, and symmetry-breaking in cell polarization. We develop a modeling framework for bilayer reaction-diffusion systems and relate it to a range of existing models. We derive conditions for diffusion-driven instability of a spatially homogeneous equilibrium analogous to the classical conditions for a Turing instability in the simplest nontrivial setting where one domain has a standard reaction-diffusion system, and the other permits only diffusion. Due to the transverse coupling between these two regions, standard techniques for computing eigenfunctions of the Laplacian cannot be applied, and so we propose an alternative method to compute the dispersion relation directly. We compare instability conditions with full numerical simulations to demonstrate impacts of the geometry and coupling parameters on patterning, and explore various experimentally relevant asymptotic regimes. In the regime where the first domain is suitably thin, we recover a simple modulation of the standard Turing conditions, and find that often the broad impact of the diffusion-only domain is to reduce the ability of the system to form patterns. We also demonstrate complex impacts of this coupling on pattern formation. For instance, we exhibit non-monotonicity of pattern-forming instabilities with respect to geometric and coupling parameters, and highlight an instability from a nontrivial interaction between kinetics in one domain and diffusion in the other. These results are valuable for informing design choices in applications such as synthetic engineering of Turing patterns, but also for understanding the role of stratified media in modulating pattern-forming processes in developmental biology and beyond.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BULLETIN OF MATHEMATICAL BIOLOGY
ISSN
0092-8240
e-ISSN
1522-9602
Svazek periodika
82
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
37
Strana od-do
—
Kód UT WoS článku
000581737600001
EID výsledku v databázi Scopus
2-s2.0-85092608131