Palindromic Length of Words with Many Periodic Palindromes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00345711" target="_blank" >RIV/68407700:21340/20:00345711 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-62536-8_14" target="_blank" >https://doi.org/10.1007/978-3-030-62536-8_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-62536-8_14" target="_blank" >10.1007/978-3-030-62536-8_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Palindromic Length of Words with Many Periodic Palindromes
Popis výsledku v původním jazyce
The palindromic length PL(v) of a finite word v is the minimal number of palindromes whose concatenation is equal to v. In 2013, Frid, Puzynina, and Zamboni conjectured that: If w is an infinite word and k is an integer such that PL(u)<=k for every factor u of w then w is ultimately periodic. Suppose that w is an infinite word and k is an integer such PL(u)<=k for every factor u of w. Let Ω(w,k) be the set of all factors u of w that have more than sqrt[k](k^{-1}|u|) palindromic prefixes. We show that Ω(w,k) is an infinite set and we show that for each positive integer j there are palindromes a, b and a word u in Ω(w,k) such that (ab)^j is a factor of u and b is nonempty. Note that (ab)^j is a periodic word and (ab)^ia is a palindrome for each i<=j. These results justify the following question: What is the palindromic length of a concatenation of a suffix of b and a periodic word (ab)^j with “many” periodic palindromes? It is known that if u, v are nonempty words then |PL(uv)-PL(u)|<=PL(v). The main result of our article shows that if a, b are palindromes, b is nonempty, u is a nonempty suffix of b, |ab| is the minimal period of aba, and j is a positive integer with j>=3PL(u) then PL(u(ab)^j)-PL(u)>=0.
Název v anglickém jazyce
Palindromic Length of Words with Many Periodic Palindromes
Popis výsledku anglicky
The palindromic length PL(v) of a finite word v is the minimal number of palindromes whose concatenation is equal to v. In 2013, Frid, Puzynina, and Zamboni conjectured that: If w is an infinite word and k is an integer such that PL(u)<=k for every factor u of w then w is ultimately periodic. Suppose that w is an infinite word and k is an integer such PL(u)<=k for every factor u of w. Let Ω(w,k) be the set of all factors u of w that have more than sqrt[k](k^{-1}|u|) palindromic prefixes. We show that Ω(w,k) is an infinite set and we show that for each positive integer j there are palindromes a, b and a word u in Ω(w,k) such that (ab)^j is a factor of u and b is nonempty. Note that (ab)^j is a periodic word and (ab)^ia is a palindrome for each i<=j. These results justify the following question: What is the palindromic length of a concatenation of a suffix of b and a periodic word (ab)^j with “many” periodic palindromes? It is known that if u, v are nonempty words then |PL(uv)-PL(u)|<=PL(v). The main result of our article shows that if a, b are palindromes, b is nonempty, u is a nonempty suffix of b, |ab| is the minimal period of aba, and j is a positive integer with j>=3PL(u) then PL(u(ab)^j)-PL(u)>=0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
22nd International Conference, DCFS 2020, Vienna, Austria, August 24–26, 2020, Proceedings
ISBN
978-3-030-62535-1
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
167-179
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Vienna
Datum konání akce
24. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—