Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Simulation of a NuScale core design with the CASL VERA code

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00345792" target="_blank" >RIV/68407700:21340/21:00345792 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.nucengdes.2020.110956" target="_blank" >https://doi.org/10.1016/j.nucengdes.2020.110956</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nucengdes.2020.110956" target="_blank" >10.1016/j.nucengdes.2020.110956</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Simulation of a NuScale core design with the CASL VERA code

  • Popis výsledku v původním jazyce

    Three-dimensional (3D) full-core calculations are an integral part of fuel reload design for today’s light water reactors (LWRs). The current approaches are typically based on the nodal diffusion codes that calculate criticality state points and power distributions as a function of burnup. The CASL VERA (Consortium for Advanced Simulation of Light Water Reactors, Virtual Environment for Reactor Applications) code represents one of the latest advancements in 3D full-core calculation analysis based on transport theory methods employing the Method of Characteristics (MOC) and coupled multi-physics. In this article, a publicly released version of the NuScale reactor core is analysed with the VERA code (version 3.9 and 4.1) and contrasted against some static Serpent and Polaris based simulations. The analysis shows an excellent agreement for the lattice-level calculations as well as with some of the 3D full-core models. However, larger deviations were found in cases with heavy reflector models, whereby the reflector composition was found to impact the differences between the VERA and Serpent results. In this analysis, it was determined that greater than 90% stainless steel content in the heavy reflector leads to higher deviations between the VERA results and the Serpent results. The burnup calculations showed that the presence of the heavy reflector extends the cycle length and also leads to a flatter power distribution in the core, which can generally be interpreted as more efficient.

  • Název v anglickém jazyce

    Simulation of a NuScale core design with the CASL VERA code

  • Popis výsledku anglicky

    Three-dimensional (3D) full-core calculations are an integral part of fuel reload design for today’s light water reactors (LWRs). The current approaches are typically based on the nodal diffusion codes that calculate criticality state points and power distributions as a function of burnup. The CASL VERA (Consortium for Advanced Simulation of Light Water Reactors, Virtual Environment for Reactor Applications) code represents one of the latest advancements in 3D full-core calculation analysis based on transport theory methods employing the Method of Characteristics (MOC) and coupled multi-physics. In this article, a publicly released version of the NuScale reactor core is analysed with the VERA code (version 3.9 and 4.1) and contrasted against some static Serpent and Polaris based simulations. The analysis shows an excellent agreement for the lattice-level calculations as well as with some of the 3D full-core models. However, larger deviations were found in cases with heavy reflector models, whereby the reflector composition was found to impact the differences between the VERA and Serpent results. In this analysis, it was determined that greater than 90% stainless steel content in the heavy reflector leads to higher deviations between the VERA results and the Serpent results. The burnup calculations showed that the presence of the heavy reflector extends the cycle length and also leads to a flatter power distribution in the core, which can generally be interpreted as more efficient.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20305 - Nuclear related engineering; (nuclear physics to be 1.3);

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_013%2F0001790" target="_blank" >EF16_013/0001790: Posílení a rozvoj výzkumu na ČVUT v Praze s využitím výzkumné infrastruktury VR-1- Školní reaktor pro výzkumnou činnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nuclear Engineering and Design

  • ISSN

    0029-5493

  • e-ISSN

    1872-759X

  • Svazek periodika

    371

  • Číslo periodika v rámci svazku

    110956

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000604781300007

  • EID výsledku v databázi Scopus

    2-s2.0-85097091168