Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00345984" target="_blank" >RIV/68407700:21340/21:00345984 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3934/dcdss.2020349" target="_blank" >https://doi.org/10.3934/dcdss.2020349</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3934/dcdss.2020349" target="_blank" >10.3934/dcdss.2020349</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction

  • Popis výsledku v původním jazyce

    In this article, we deal with the numerical immersed boundary-lattice Boltzmann method for simulation of the fluid-structure interaction problems in 2D. We consider the interaction of incompressible, Newtonian fluid in an isothermal system with an elastic fiber, which represents an immersed body boundary. First, a short introduction to the lattice Boltzmann and immersed boundary method is presented and the combination of these two methods is briefly discussed. Then, the choice of the smooth approximation of the Dirac delta function and the discretization of the immersed body is discussed. One of the significant drawbacks of immersed boundary method is the penetrative flow through the immersed impermeable boundary. The effect of the immersed body boundary discretization is investigated using two benchmark problems, where an elastic fiber is deformed. The results indicate that the restrictions placed on the discretization in literature are not necessary.

  • Název v anglickém jazyce

    Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction

  • Popis výsledku anglicky

    In this article, we deal with the numerical immersed boundary-lattice Boltzmann method for simulation of the fluid-structure interaction problems in 2D. We consider the interaction of incompressible, Newtonian fluid in an isothermal system with an elastic fiber, which represents an immersed body boundary. First, a short introduction to the lattice Boltzmann and immersed boundary method is presented and the combination of these two methods is briefly discussed. Then, the choice of the smooth approximation of the Dirac delta function and the discretization of the immersed body is discussed. One of the significant drawbacks of immersed boundary method is the penetrative flow through the immersed impermeable boundary. The effect of the immersed body boundary discretization is investigated using two benchmark problems, where an elastic fiber is deformed. The results indicate that the restrictions placed on the discretization in literature are not necessary.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete and Continuous Dynamical Systems. Series S

  • ISSN

    1937-1632

  • e-ISSN

    1937-1179

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    819-833

  • Kód UT WoS článku

    000608373600005

  • EID výsledku v databázi Scopus

    2-s2.0-85099681282