Field Crops Classiffcation Using Sentinel-2 Satellite Image Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353105" target="_blank" >RIV/68407700:21340/21:00353105 - isvavai.cz</a>
Výsledek na webu
<a href="https://gams.fjfi.cvut.cz" target="_blank" >https://gams.fjfi.cvut.cz</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Field Crops Classiffcation Using Sentinel-2 Satellite Image Data
Popis výsledku v původním jazyce
Sentinel-2 mission, developed and operated by European Space Agency (ESA), is designed to provide high-resolution image data over land and coastal waters, which are further used for a multitude of applications, such as agricultural monitoring. Acquired data by the Sentinel-2 satellite are publicly available under the Copernicus Programme and can be accessed straightforwardly. In addition, we are provided with annotated maps of agricultural fields, which can be used as ground truth data. These maps include the location and additional speciffcation of fields and crops grown on the field. In this paper, we are interested in field crop classiffcation within the specified region. Aforementioned Sentinel-2 satellite image data and field labels are therefore combined to provide a dataset. This dataset can be then utilized by the classifier. For this cause, convolutional neural networks are used, as they have shown outstanding results of image classiffcation over the past years.
Název v anglickém jazyce
Field Crops Classiffcation Using Sentinel-2 Satellite Image Data
Popis výsledku anglicky
Sentinel-2 mission, developed and operated by European Space Agency (ESA), is designed to provide high-resolution image data over land and coastal waters, which are further used for a multitude of applications, such as agricultural monitoring. Acquired data by the Sentinel-2 satellite are publicly available under the Copernicus Programme and can be accessed straightforwardly. In addition, we are provided with annotated maps of agricultural fields, which can be used as ground truth data. These maps include the location and additional speciffcation of fields and crops grown on the field. In this paper, we are interested in field crop classiffcation within the specified region. Aforementioned Sentinel-2 satellite image data and field labels are therefore combined to provide a dataset. This dataset can be then utilized by the classifier. For this cause, convolutional neural networks are used, as they have shown outstanding results of image classiffcation over the past years.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SPMS 2020/21 Stochastic and Physical Monitoring Systems, Proceedings of the international conferences
ISBN
978-80-01-06922-6
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
61-64
Název nakladatele
České vysoké učení technické v Praze
Místo vydání
Praha
Místo konání akce
Malá Skála
Datum konání akce
24. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—