Robust and resource efficient identification of shallow neural networks by fewest samples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353191" target="_blank" >RIV/68407700:21340/21:00353191 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1093/imaiai/iaaa036" target="_blank" >https://doi.org/10.1093/imaiai/iaaa036</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imaiai/iaaa036" target="_blank" >10.1093/imaiai/iaaa036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust and resource efficient identification of shallow neural networks by fewest samples
Popis výsledku v původním jazyce
We address the structure identification and the uniform approximation of sums of ridge functions f (x) = Sigma(m)(i=1) g(i)(< a(i), x >) on R-d, representing a general form of a shallow feed-forward neural network, from a small number of query samples. Higher order differentiation, as used in our constructive approximations, of sums of ridge functions or of their compositions, as in deeper neural network, yields a natural connection between neural network weight identification and tensor product decomposition identification. In the case of the shallowest feed-forward neural network, second-order differentiation and tensors of order two (i.e., matrices) suffice as we prove in this paper. We use two sampling schemes to perform approximate differentiation-active sampling, where the sampling points are universal, actively and randomly designed, and passive sampling, where sampling points were preselected at random from a distribution with known density. Based on multiple gathered approximated first- and second-order differentials, our general approximation strategy is developed as a sequence of algorithms to perform individual sub-tasks. We first perform an active subspace search by approximating the span of the weight vectors a(1),( ...), a(m). Then we use a straightforward substitution, which reduces the dimensionality of the problem from d to m. The core of the construction is then the stable and efficient approximation of weights expressed in terms of rank-1 matrices ai circle times ai, realized by formulating their individual identification as a suitable nonlinear program. We prove the successful identification by this program of weight vectors being close to orthonormal and we also show how we can constructively reduce to this case by a whitening procedure, without loss of any generality. We finally discuss the implementation and the performance of the proposed algorithmic pipeline with extensive numerical experiments, which illustrate and confirm the theoretical
Název v anglickém jazyce
Robust and resource efficient identification of shallow neural networks by fewest samples
Popis výsledku anglicky
We address the structure identification and the uniform approximation of sums of ridge functions f (x) = Sigma(m)(i=1) g(i)(< a(i), x >) on R-d, representing a general form of a shallow feed-forward neural network, from a small number of query samples. Higher order differentiation, as used in our constructive approximations, of sums of ridge functions or of their compositions, as in deeper neural network, yields a natural connection between neural network weight identification and tensor product decomposition identification. In the case of the shallowest feed-forward neural network, second-order differentiation and tensors of order two (i.e., matrices) suffice as we prove in this paper. We use two sampling schemes to perform approximate differentiation-active sampling, where the sampling points are universal, actively and randomly designed, and passive sampling, where sampling points were preselected at random from a distribution with known density. Based on multiple gathered approximated first- and second-order differentials, our general approximation strategy is developed as a sequence of algorithms to perform individual sub-tasks. We first perform an active subspace search by approximating the span of the weight vectors a(1),( ...), a(m). Then we use a straightforward substitution, which reduces the dimensionality of the problem from d to m. The core of the construction is then the stable and efficient approximation of weights expressed in terms of rank-1 matrices ai circle times ai, realized by formulating their individual identification as a suitable nonlinear program. We prove the successful identification by this program of weight vectors being close to orthonormal and we also show how we can constructively reduce to this case by a whitening procedure, without loss of any generality. We finally discuss the implementation and the performance of the proposed algorithmic pipeline with extensive numerical experiments, which illustrate and confirm the theoretical
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/8X20043" target="_blank" >8X20043: Časově frekvenční reprezentace prostoru funkcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information and Inference: a Journal of the IMA
ISSN
2049-8772
e-ISSN
2049-8772
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
71
Strana od-do
625-695
Kód UT WoS článku
000670949400008
EID výsledku v databázi Scopus
—