Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust and resource efficient identification of shallow neural networks by fewest samples

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353191" target="_blank" >RIV/68407700:21340/21:00353191 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1093/imaiai/iaaa036" target="_blank" >https://doi.org/10.1093/imaiai/iaaa036</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imaiai/iaaa036" target="_blank" >10.1093/imaiai/iaaa036</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust and resource efficient identification of shallow neural networks by fewest samples

  • Popis výsledku v původním jazyce

    We address the structure identification and the uniform approximation of sums of ridge functions f (x) = Sigma(m)(i=1) g(i)(< a(i), x >) on R-d, representing a general form of a shallow feed-forward neural network, from a small number of query samples. Higher order differentiation, as used in our constructive approximations, of sums of ridge functions or of their compositions, as in deeper neural network, yields a natural connection between neural network weight identification and tensor product decomposition identification. In the case of the shallowest feed-forward neural network, second-order differentiation and tensors of order two (i.e., matrices) suffice as we prove in this paper. We use two sampling schemes to perform approximate differentiation-active sampling, where the sampling points are universal, actively and randomly designed, and passive sampling, where sampling points were preselected at random from a distribution with known density. Based on multiple gathered approximated first- and second-order differentials, our general approximation strategy is developed as a sequence of algorithms to perform individual sub-tasks. We first perform an active subspace search by approximating the span of the weight vectors a(1),( ...), a(m). Then we use a straightforward substitution, which reduces the dimensionality of the problem from d to m. The core of the construction is then the stable and efficient approximation of weights expressed in terms of rank-1 matrices ai circle times ai, realized by formulating their individual identification as a suitable nonlinear program. We prove the successful identification by this program of weight vectors being close to orthonormal and we also show how we can constructively reduce to this case by a whitening procedure, without loss of any generality. We finally discuss the implementation and the performance of the proposed algorithmic pipeline with extensive numerical experiments, which illustrate and confirm the theoretical

  • Název v anglickém jazyce

    Robust and resource efficient identification of shallow neural networks by fewest samples

  • Popis výsledku anglicky

    We address the structure identification and the uniform approximation of sums of ridge functions f (x) = Sigma(m)(i=1) g(i)(< a(i), x >) on R-d, representing a general form of a shallow feed-forward neural network, from a small number of query samples. Higher order differentiation, as used in our constructive approximations, of sums of ridge functions or of their compositions, as in deeper neural network, yields a natural connection between neural network weight identification and tensor product decomposition identification. In the case of the shallowest feed-forward neural network, second-order differentiation and tensors of order two (i.e., matrices) suffice as we prove in this paper. We use two sampling schemes to perform approximate differentiation-active sampling, where the sampling points are universal, actively and randomly designed, and passive sampling, where sampling points were preselected at random from a distribution with known density. Based on multiple gathered approximated first- and second-order differentials, our general approximation strategy is developed as a sequence of algorithms to perform individual sub-tasks. We first perform an active subspace search by approximating the span of the weight vectors a(1),( ...), a(m). Then we use a straightforward substitution, which reduces the dimensionality of the problem from d to m. The core of the construction is then the stable and efficient approximation of weights expressed in terms of rank-1 matrices ai circle times ai, realized by formulating their individual identification as a suitable nonlinear program. We prove the successful identification by this program of weight vectors being close to orthonormal and we also show how we can constructively reduce to this case by a whitening procedure, without loss of any generality. We finally discuss the implementation and the performance of the proposed algorithmic pipeline with extensive numerical experiments, which illustrate and confirm the theoretical

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8X20043" target="_blank" >8X20043: Časově frekvenční reprezentace prostoru funkcí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information and Inference: a Journal of the IMA

  • ISSN

    2049-8772

  • e-ISSN

    2049-8772

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    71

  • Strana od-do

    625-695

  • Kód UT WoS článku

    000670949400008

  • EID výsledku v databázi Scopus