Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A benchmark problem to evaluate implementational issues for three-dimensional flows of incompressible fluids subject to slip boundary conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00365736" target="_blank" >RIV/68407700:21340/21:00365736 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/21:10438140

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.apples.2021.100038" target="_blank" >https://doi.org/10.1016/j.apples.2021.100038</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apples.2021.100038" target="_blank" >10.1016/j.apples.2021.100038</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A benchmark problem to evaluate implementational issues for three-dimensional flows of incompressible fluids subject to slip boundary conditions

  • Popis výsledku v původním jazyce

    We consider flows of an incompressible Navier–Stokes fluid in a tubular domain with Navier’s slip boundary condition imposed on the impermeable wall. We focus on several implementational issues associated with this type of boundary conditions within the framework of the standard Taylor-Hood mixed finite element method and present the computational results for flows in a tubular domain of finite length with one inlet and one outlet. In particular, we present the details regarding variants of the Nitsche method concerning the incorporation of the impermeability condition on the wall. We also find that the manner in which the normal to the boundary is numerically implemented influences the nature of the computational results. As a benchmark, we set up steady flows in a tube of finite length and compare the computational results with the analytical solutions. Finally, we identify various quantities of interest, such as the dissipation, wall shear stress, vorticity, pressure drop, and provide their precise mathematical definitions. We document how well these quantities are computationally approximated in the case of the benchmark. Although the geometry of the benchmark is simple, the correct computational results require careful selection of numerical methods and surprisingly non-trivial computational resources. Our goal is to test, using the setting with a known analytical solution, a robust computational tool that would be suitable for computations on real complex geometries that have relevance to problems in engineering and medicine. The model parameters in our computations are chosen based on flows in large arteries.

  • Název v anglickém jazyce

    A benchmark problem to evaluate implementational issues for three-dimensional flows of incompressible fluids subject to slip boundary conditions

  • Popis výsledku anglicky

    We consider flows of an incompressible Navier–Stokes fluid in a tubular domain with Navier’s slip boundary condition imposed on the impermeable wall. We focus on several implementational issues associated with this type of boundary conditions within the framework of the standard Taylor-Hood mixed finite element method and present the computational results for flows in a tubular domain of finite length with one inlet and one outlet. In particular, we present the details regarding variants of the Nitsche method concerning the incorporation of the impermeability condition on the wall. We also find that the manner in which the normal to the boundary is numerically implemented influences the nature of the computational results. As a benchmark, we set up steady flows in a tube of finite length and compare the computational results with the analytical solutions. Finally, we identify various quantities of interest, such as the dissipation, wall shear stress, vorticity, pressure drop, and provide their precise mathematical definitions. We document how well these quantities are computationally approximated in the case of the benchmark. Although the geometry of the benchmark is simple, the correct computational results require careful selection of numerical methods and surprisingly non-trivial computational resources. Our goal is to test, using the setting with a known analytical solution, a robust computational tool that would be suitable for computations on real complex geometries that have relevance to problems in engineering and medicine. The model parameters in our computations are chosen based on flows in large arteries.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applications in Engineering Science

  • ISSN

    2666-4968

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    100038

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85136077219