Prediction of Ventricular Mechanics After Pulmonary Valve Replacement in Tetralogy of Fallot by Biomechanical Modeling: A Step Towards Precision Healthcare
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00382280" target="_blank" >RIV/68407700:21340/21:00382280 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10439-021-02895-9" target="_blank" >https://doi.org/10.1007/s10439-021-02895-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10439-021-02895-9" target="_blank" >10.1007/s10439-021-02895-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of Ventricular Mechanics After Pulmonary Valve Replacement in Tetralogy of Fallot by Biomechanical Modeling: A Step Towards Precision Healthcare
Popis výsledku v původním jazyce
Clinical indicators of heart function are often limited in their ability to accurately evaluate the current mechanical state of the myocardium. Biomechanical modeling has been shown to be a promising tool in addition to clinical indicators. By providing a patient-specific measure of myocardial active stress (contractility), biomechanical modeling can enhance the precision of the description of patient's pathophysiology at any given point in time. In this work we aim to explore the ability of biomechanical modeling to predict the response of ventricular mechanics to the progressively decreasing afterload in repaired tetralogy of Fallot (rTOF) patients undergoing pulmonary valve replacement (PVR) for significant residual right ventricular outflow tract obstruction (RVOTO). We used 19 patient-specific models of patients with rTOF prior to pulmonary valve replacement (PVR), denoted as PSMpre, and patient-specific models of the same patients created post-PVR (PSMpost)-both created in our previous published work. Using the PSMpre and assuming cessation of the pulmonary regurgitation and a progressive decrease of RVOT resistance, we built relationships between the contractility and RVOT resistance post-PVR. The predictive value of such in silico obtained relationships were tested against the PSMpost, i.e. the models created from the actual post-PVR datasets. Our results show a linear 1-dimensional relationship between the in silico predicted contractility post-PVR and the RVOT resistance. The predicted contractility was close to the contractility in the PSMpost model with a mean (+/- SD) difference of 6.5 (+/- 3.0)%. The relationships between the contractility predicted by in silico PVR vs. RVOT resistance have a potential to inform clinicians about hypothetical mechanical response of the ventricle based on the degree of pre-operative RVOTO.
Název v anglickém jazyce
Prediction of Ventricular Mechanics After Pulmonary Valve Replacement in Tetralogy of Fallot by Biomechanical Modeling: A Step Towards Precision Healthcare
Popis výsledku anglicky
Clinical indicators of heart function are often limited in their ability to accurately evaluate the current mechanical state of the myocardium. Biomechanical modeling has been shown to be a promising tool in addition to clinical indicators. By providing a patient-specific measure of myocardial active stress (contractility), biomechanical modeling can enhance the precision of the description of patient's pathophysiology at any given point in time. In this work we aim to explore the ability of biomechanical modeling to predict the response of ventricular mechanics to the progressively decreasing afterload in repaired tetralogy of Fallot (rTOF) patients undergoing pulmonary valve replacement (PVR) for significant residual right ventricular outflow tract obstruction (RVOTO). We used 19 patient-specific models of patients with rTOF prior to pulmonary valve replacement (PVR), denoted as PSMpre, and patient-specific models of the same patients created post-PVR (PSMpost)-both created in our previous published work. Using the PSMpre and assuming cessation of the pulmonary regurgitation and a progressive decrease of RVOT resistance, we built relationships between the contractility and RVOT resistance post-PVR. The predictive value of such in silico obtained relationships were tested against the PSMpost, i.e. the models created from the actual post-PVR datasets. Our results show a linear 1-dimensional relationship between the in silico predicted contractility post-PVR and the RVOT resistance. The predicted contractility was close to the contractility in the PSMpost model with a mean (+/- SD) difference of 6.5 (+/- 3.0)%. The relationships between the contractility predicted by in silico PVR vs. RVOT resistance have a potential to inform clinicians about hypothetical mechanical response of the ventricle based on the degree of pre-operative RVOTO.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/NV19-08-00071" target="_blank" >NV19-08-00071: Analýza charakteru proudění a predikce vývoje změn v endovaskulárně ošetřených tepnách pomocí MR zobrazování a matematického modelování.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Biomedical Engineering
ISSN
0090-6964
e-ISSN
1573-9686
Svazek periodika
49
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
3339-3348
Kód UT WoS článku
000724641200002
EID výsledku v databázi Scopus
2-s2.0-85120373504