Mathematical Modeling of the Multicomponent Flow in Porous Media using higher-order methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00361516" target="_blank" >RIV/68407700:21340/22:00361516 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mathematical Modeling of the Multicomponent Flow in Porous Media using higher-order methods
Popis výsledku v původním jazyce
In this paper, we present a detailed numerical scheme for a single-phase compressible flow without diffusion of a multi-component mixture in porous media with the higher-order approximation in both space and time. The mathematical model consists of Darcy velocity, transport equations for each component of a mixture, pressure equation and associated relations for physical quantities such as viscosity or equation of state. The discrete problem is obtained using a combination of the discontinuous Galerkin method for the transport equations and the mixed-hybrid finite element method for the Darcy velocity and the pressure equation. In both methods the higher-order approximation is used. The resulting nonlinear problem for concentrations is solved with the fully mass-conservative iterative IMPEC method. Experimental order of convergence analysis (EOC) and some numerical experiments of a 2D flow are carried out.
Název v anglickém jazyce
Mathematical Modeling of the Multicomponent Flow in Porous Media using higher-order methods
Popis výsledku anglicky
In this paper, we present a detailed numerical scheme for a single-phase compressible flow without diffusion of a multi-component mixture in porous media with the higher-order approximation in both space and time. The mathematical model consists of Darcy velocity, transport equations for each component of a mixture, pressure equation and associated relations for physical quantities such as viscosity or equation of state. The discrete problem is obtained using a combination of the discontinuous Galerkin method for the transport equations and the mixed-hybrid finite element method for the Darcy velocity and the pressure equation. In both methods the higher-order approximation is used. The resulting nonlinear problem for concentrations is solved with the fully mass-conservative iterative IMPEC method. Experimental order of convergence analysis (EOC) and some numerical experiments of a 2D flow are carried out.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů