A multiscale thermodynamic generalization of Maxwell-Stefan diffusion equations and of the dusty gas model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00363807" target="_blank" >RIV/68407700:21340/22:00363807 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10452966
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijheatmasstransfer.2022.123405" target="_blank" >https://doi.org/10.1016/j.ijheatmasstransfer.2022.123405</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.123405" target="_blank" >10.1016/j.ijheatmasstransfer.2022.123405</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A multiscale thermodynamic generalization of Maxwell-Stefan diffusion equations and of the dusty gas model
Popis výsledku v původním jazyce
Despite the fact that the theory of mixtures has been part of non-equilibrium thermodynamics and engineering for a long time, it is far from complete. While it is well formulated and tested in the case of mechanical equilibrium (where only diffusion-like processes take place), the question how to properly describe homogeneous mixtures that flow with multiple independent velocities that still possess some inertia (before mechanical equilibrium is reached) is still open. Moreover, the mixtures can have several temperatures before the temperatures relax to a common value. In this paper, we derive a theory of mixtures from Hamiltonian mechanics in interaction with electromagnetic fields. The resulting evolution equations are then reduced to the case with only one momentum (classical irreversible thermodynamics), providing a generalization of the Maxwell-Stefan diffusion equations. Then, we reduce that description to the mechanical equilibrium (no momentum) and derive a non-isothermal variant of the dusty gas model. These reduced equations are solved numerically, and we illustrate the results on efficiency analysis, showing where in a concentration cell efficiency is lost. Finally, the theory of mixtures identifies the temperature difference between constituents as a possible new source of the Soret coefficient. For the sake of clarity, we restrict the presentation to the case of binary mixtures; the generalization is straightforward. (c) 2022ElsevierLtd. Allrightsreserved.
Název v anglickém jazyce
A multiscale thermodynamic generalization of Maxwell-Stefan diffusion equations and of the dusty gas model
Popis výsledku anglicky
Despite the fact that the theory of mixtures has been part of non-equilibrium thermodynamics and engineering for a long time, it is far from complete. While it is well formulated and tested in the case of mechanical equilibrium (where only diffusion-like processes take place), the question how to properly describe homogeneous mixtures that flow with multiple independent velocities that still possess some inertia (before mechanical equilibrium is reached) is still open. Moreover, the mixtures can have several temperatures before the temperatures relax to a common value. In this paper, we derive a theory of mixtures from Hamiltonian mechanics in interaction with electromagnetic fields. The resulting evolution equations are then reduced to the case with only one momentum (classical irreversible thermodynamics), providing a generalization of the Maxwell-Stefan diffusion equations. Then, we reduce that description to the mechanical equilibrium (no momentum) and derive a non-isothermal variant of the dusty gas model. These reduced equations are solved numerically, and we illustrate the results on efficiency analysis, showing where in a concentration cell efficiency is lost. Finally, the theory of mixtures identifies the temperature difference between constituents as a possible new source of the Soret coefficient. For the sake of clarity, we restrict the presentation to the case of binary mixtures; the generalization is straightforward. (c) 2022ElsevierLtd. Allrightsreserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-22092S" target="_blank" >GA20-22092S: Víceškálová termodynamika: okrajové podmínky, integrace a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Heat and Mass Transfer
ISSN
0017-9310
e-ISSN
1879-2189
Svazek periodika
199
Číslo periodika v rámci svazku
123405
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000888904500002
EID výsledku v databázi Scopus
2-s2.0-85138504476