Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Upscaling the Poisson-Nernst-Planck equations for ion transport in weakly heterogeneous charged porous media

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00364751" target="_blank" >RIV/68407700:21340/23:00364751 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.aml.2022.108482" target="_blank" >https://doi.org/10.1016/j.aml.2022.108482</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aml.2022.108482" target="_blank" >10.1016/j.aml.2022.108482</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Upscaling the Poisson-Nernst-Planck equations for ion transport in weakly heterogeneous charged porous media

  • Popis výsledku v původním jazyce

    The Poisson-Nernst-Planck (PNP) equations govern the continuum level descrip-tion of ions in electrolytes and especially the impact of charged surfaces. In numerous applications such surfaces are complex, varying on a small lengthscale compared to the overall scale of the system, often prohibiting the direct prediction of the osmotic swelling pressures induced by ion behaviours in Debye layers near surfaces. With periodicity, upscaling techniques can be readily used to determine the behaviour of the swelling pressure on large lengthscales without solving the PNP equations on the complex domain, though generalising to cases where the periodicity is only approximate is more challenging. Here, we generalise a method by Bruna and Chapman (2015) for upscaling a non-periodic diffusion equation to the PNP equations. After upscaling, we find a rational derivation of the swelling pressure closely resembling the classical, though phenomenological, use of Donnan membrane theory predictions for the swelling pressure in cartilage, together with a novel contribution driven by heterogeneous fixed (surface) charges. The resulting macroscale model is also shown to be thermodynamically consistent, though its comparison with a recent upscaled models for swelling pressure in cartilage mechanics emphasises the need to understand how macroscale models depend on differing upscaling techniques, especially in the absence of perfect periodicity.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

  • Název v anglickém jazyce

    Upscaling the Poisson-Nernst-Planck equations for ion transport in weakly heterogeneous charged porous media

  • Popis výsledku anglicky

    The Poisson-Nernst-Planck (PNP) equations govern the continuum level descrip-tion of ions in electrolytes and especially the impact of charged surfaces. In numerous applications such surfaces are complex, varying on a small lengthscale compared to the overall scale of the system, often prohibiting the direct prediction of the osmotic swelling pressures induced by ion behaviours in Debye layers near surfaces. With periodicity, upscaling techniques can be readily used to determine the behaviour of the swelling pressure on large lengthscales without solving the PNP equations on the complex domain, though generalising to cases where the periodicity is only approximate is more challenging. Here, we generalise a method by Bruna and Chapman (2015) for upscaling a non-periodic diffusion equation to the PNP equations. After upscaling, we find a rational derivation of the swelling pressure closely resembling the classical, though phenomenological, use of Donnan membrane theory predictions for the swelling pressure in cartilage, together with a novel contribution driven by heterogeneous fixed (surface) charges. The resulting macroscale model is also shown to be thermodynamically consistent, though its comparison with a recent upscaled models for swelling pressure in cartilage mechanics emphasises the need to understand how macroscale models depend on differing upscaling techniques, especially in the absence of perfect periodicity.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-22092S" target="_blank" >GA20-22092S: Víceškálová termodynamika: okrajové podmínky, integrace a aplikace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Mathematics Letters

  • ISSN

    0893-9659

  • e-ISSN

    1873-5452

  • Svazek periodika

    137

  • Číslo periodika v rámci svazku

    108482

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    000927084700011

  • EID výsledku v databázi Scopus

    2-s2.0-85141751757