Upscaling the Poisson-Nernst-Planck equations for ion transport in weakly heterogeneous charged porous media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00364751" target="_blank" >RIV/68407700:21340/23:00364751 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.aml.2022.108482" target="_blank" >https://doi.org/10.1016/j.aml.2022.108482</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2022.108482" target="_blank" >10.1016/j.aml.2022.108482</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Upscaling the Poisson-Nernst-Planck equations for ion transport in weakly heterogeneous charged porous media
Popis výsledku v původním jazyce
The Poisson-Nernst-Planck (PNP) equations govern the continuum level descrip-tion of ions in electrolytes and especially the impact of charged surfaces. In numerous applications such surfaces are complex, varying on a small lengthscale compared to the overall scale of the system, often prohibiting the direct prediction of the osmotic swelling pressures induced by ion behaviours in Debye layers near surfaces. With periodicity, upscaling techniques can be readily used to determine the behaviour of the swelling pressure on large lengthscales without solving the PNP equations on the complex domain, though generalising to cases where the periodicity is only approximate is more challenging. Here, we generalise a method by Bruna and Chapman (2015) for upscaling a non-periodic diffusion equation to the PNP equations. After upscaling, we find a rational derivation of the swelling pressure closely resembling the classical, though phenomenological, use of Donnan membrane theory predictions for the swelling pressure in cartilage, together with a novel contribution driven by heterogeneous fixed (surface) charges. The resulting macroscale model is also shown to be thermodynamically consistent, though its comparison with a recent upscaled models for swelling pressure in cartilage mechanics emphasises the need to understand how macroscale models depend on differing upscaling techniques, especially in the absence of perfect periodicity.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Název v anglickém jazyce
Upscaling the Poisson-Nernst-Planck equations for ion transport in weakly heterogeneous charged porous media
Popis výsledku anglicky
The Poisson-Nernst-Planck (PNP) equations govern the continuum level descrip-tion of ions in electrolytes and especially the impact of charged surfaces. In numerous applications such surfaces are complex, varying on a small lengthscale compared to the overall scale of the system, often prohibiting the direct prediction of the osmotic swelling pressures induced by ion behaviours in Debye layers near surfaces. With periodicity, upscaling techniques can be readily used to determine the behaviour of the swelling pressure on large lengthscales without solving the PNP equations on the complex domain, though generalising to cases where the periodicity is only approximate is more challenging. Here, we generalise a method by Bruna and Chapman (2015) for upscaling a non-periodic diffusion equation to the PNP equations. After upscaling, we find a rational derivation of the swelling pressure closely resembling the classical, though phenomenological, use of Donnan membrane theory predictions for the swelling pressure in cartilage, together with a novel contribution driven by heterogeneous fixed (surface) charges. The resulting macroscale model is also shown to be thermodynamically consistent, though its comparison with a recent upscaled models for swelling pressure in cartilage mechanics emphasises the need to understand how macroscale models depend on differing upscaling techniques, especially in the absence of perfect periodicity.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-22092S" target="_blank" >GA20-22092S: Víceškálová termodynamika: okrajové podmínky, integrace a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Mathematics Letters
ISSN
0893-9659
e-ISSN
1873-5452
Svazek periodika
137
Číslo periodika v rámci svazku
108482
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
000927084700011
EID výsledku v databázi Scopus
2-s2.0-85141751757